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RIFT: Multi-Modal Image Matching Based on
Radiation-Variation Insensitive Feature Transform

Jiayuan Li , Qingwu Hu , and Mingyao Ai

Abstract— Traditional feature matching methods, such as
scale-invariant feature transform (SIFT), usually use image
intensity or gradient information to detect and describe fea-
ture points; however, both intensity and gradient are sensitive
to nonlinear radiation distortions (NRD). To solve this prob-
lem, this paper proposes a novel feature matching algorithm
that is robust to large NRD. The proposed method is called
radiation-variation insensitive feature transform (RIFT). There
are three main contributions in RIFT. First, RIFT uses phase
congruency (PC) instead of image intensity for feature point
detection. RIFT considers both the number and repeatability
of feature points and detects both corner points and edge
points on the PC map. Second, RIFT originally proposes a
maximum index map (MIM) for feature description. The MIM
is constructed from the log-Gabor convolution sequence and is
much more robust to NRD than traditional gradient map. Thus,
RIFT not only largely improves the stability of feature detection
but also overcomes the limitation of gradient information for
feature description. Third, RIFT analyses the inherent influence
of rotations on the values of the MIM and realises rotation
invariance. We use six different types of multi-modal image
datasets to evaluate RIFT, including optical-optical, infrared-
optical, synthetic aperture radar (SAR)-optical, depth-optical,
map-optical, and day-night datasets. Experimental results show
that RIFT is superior to SIFT and SAR-SIFT on multi-modal
images. To the best of our knowledge, RIFT is the first feature
matching algorithm that can achieve good performance on all the
abovementioned types of multi-modal images. The source code of
RIFT and the multi-modal image datasets are publicly available.1

Index Terms— Multi-modal image matching, nonlinear radia-
tion distortions (NRD), feature matching, maximum index map
(MIM), phase congruency (PC).

I. INTRODUCTION

IMAGE feature matching is a fundamental and crucial issue
in photogrammetry and remote sensing, whose goal is to

extract reliable feature correspondences from two or more
images with overlapping regions [1]. It is also widely used
in the fields of computer vision [2], [3], robot vision [4], [5],
medical image analysis [6] and so on. Image matching has
always been a hot research issue and has made great progress
in the past decades. However, image matching, especially
remote sensing image matching, is still an ill-posed problem
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that suffers from many uncertainties. In general, a remote
sensing image pair may contain scale, rotation, radiance,
noise, blur, or temporal changes [7]. These huge differences
in geometry and radiation pose a daunting challenge to
the current image matching algorithms, which result in a
substantial reduction in matching performance and make it
difficult to meet the requirements of ever-changing practical
applications. Therefore, it is very important to study more
effective, universal, and robust image matching algorithms.
To achieve universal robust image matching, three difficult
problems need to be solved: (1) the robustness to various
geometric and radiation distortions; (2) more efficient and
robust outlier detection models; (3) the non-rigid deformation
image matching problem. In our past work, we have studied
geometric distortions [8], non-rigid matching [7], [9], and out-
lier removal [10]–[12]. In this paper, we will focus on radiation
distortions, especially nonlinear radiation distortions (NRD).

Radiation distortions refer to the phenomenon in which the
spectral emissivity of the ground objects is different from the
real spectral emissivity in the process of the sensor imag-
ing [13]. The factors that cause radiation distortions are various
and can be summarised as two aspects [14]: (1) the imaging
property of the sensor itself. This type of error can be regarded
as systematic error. Images acquired by the same sensor often
have the same systematic error and thus have little effect on the
classical image matching algorithms. However, with the diver-
sification of sensors and applications, it is often necessary to
fuse the superiority information of different sensors and finally
achieve a more accurate and reliable description of the scene.
The imaging mechanism of different sensors may be quite
different, and the acquired images have different expressions
for the same objects, which result in large radiation differences
between image pairs. Classical feature matching methods are
still able to address linear radiation differences; unfortunately,
for NRD, these methods may not work. Generally, the images
with large NRD are called multi-modal images. Traditional
methods usually use intensity information or gradient informa-
tion for feature detection and description. However, both image
intensity and gradient are very sensitive to NRD. It can be
said that the processing of multi-modal images is a bottleneck
problem of image matching. At present, if the geometrical
geographic information of images is unavailable, no image
matching method can be simultaneously applied to optical-
optical matching, infrared-optical matching, synthetic aperture
radar (SAR)-optical matching, depth-optical matching, map-
optical matching, and day-night matching. (2) The radiation
transmission error caused by the atmosphere. In the process
of electromagnetic wave transmission, the spectral emissiv-
ity of ground objects may be distorted by the influence
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of atmospheric action, solar altitude angle, and illumination
conditions. These types of distortions are especially prominent
in multi-temporal remote sensing images, which often appear
as “different objects with same spectrum” or “same object
with different spectra” phenomenon. Such nonlinear differ-
ences will reduce the correlation between correspondences,
which often results in difficulties in matching. Because multi-
modal and multi-temporal remote sensing image data play an
important role in target detection, disaster assessment, illegal
building detection, and land resource change monitoring, it is
imperative to study image matching methods against large
radiation differences, especially large NRD.

In this paper, we propose a radiation insensitive feature
matching method based on phase congruency (PC) and a max-
imum index map (MIM), which is called radiation-variation
insensitive feature transform (RIFT). First, we detect corner
feature points and edge feature points on the PC map. We find
that the corner feature usually has better repeatability and there
is a higher number of edge features. Thus, the combination of
corner features and edge features can improve the stability
of feature detection. Then, we construct a MIM based on
the log-Gabor convolution sequence, which is much more
robust to NRD than traditional gradient maps. Thus, the MIM
is very suitable for multi-modal image feature description.
However, MIM is very sensitive to rotations. Different rotation
angles may result in different MIMs. We analyse the inherent
influence of rotations on the values of MIMs and achieve
rotation-invariant by the construction of multiple MIMs.
Experiments show that RIFT is far superior to invariant feature
transform (SIFT) [15] and SAR-SIFT [16] on multi-modal
images. To the best of our knowledge, RIFT is the first feature
matching algorithm that can achieve good performance on all
different types of multi-modal images.

II. RELATED WORK

Image matching is one of the most important steps in the
automatic production of photogrammetry and remote sensing
products, and its results directly affect the applications of
image stitching, bundle adjustment, and 3D reconstruction.
Reference [1] provides a very systematic summary and clas-
sification of traditional image matching methods. According
to this summary, image matching methods can be divided
into two categories: area-based matching methods and feature-
based matching methods.

A. Area-Based Methods

Area-based matching methods use the original pixel values
and specific similarity measures to find the matching relation-
ship between image pairs. Usually, a predefined local window
or global image is used to search for matching, and no feature
extraction stage is required [17].

One of the drawbacks of area-based methods is that they are
only suitable for image pairs containing translation changes.
For image pairs containing rotation changes, a circular win-
dow is needed to perform the correlation. However, if the
image pairs contain complex variations such as rotations, scale
changes, geometric distortions, etc., these methods will fail.

Another drawback is that the content inside the local win-
dow is not salient. The image content inside the search window
may be relatively smooth and lack salient features. If the
search window is located in a weakly textured or non-textured
area of the image, then this method is likely to get an incorrect
match. Therefore, the window selection should be based on the
image content, and the portion containing more salient features
should be selected as the search window content.

Area-based methods can be roughly divided into
three sub-categories, including correlation-based
methods [18], [19], Fourier-based methods [20], [21],
and mutual information-based methods [22], [23].

B. Feature-Based Methods

Different from area-based methods, feature-based methods
are not directly based on image intensity information. These
methods usually first detect salient structural features in the
image, which can be point features (corners, line intersec-
tions, etc.), line features (lines, contours, etc.), or region
features. These features must be salient, easily detectable, and
stable. That is, regardless of the effect of image geometric
distortions and radiation distortions, there are always enough
identical elements in the two feature sets. In the following,
we will only review point feature matching methods because
point feature is the simplest and the basis of other features.

Features can better describe the structure information of
an image, thus reducing the sensitivity to the sensor noise
and scene noise. Feature-based methods are generally more
robust than area-based methods. In the field of computer
vision, the SIFT [15] is one of the most commonly used and
effective feature point matching methods. It first constructs a
Gaussian scale space and extracts feature points in the scale
space. Then, SIFT uses a gradient histogram technique to
describe features. Speeded-up robust features (SURF) [24]
extracts feature points based on the Hessian matrix and
introduces an integration graph technique to improve effi-
ciency. Principal component analysis SIFT (PCA-SIFT) [25]
adopts the principal component analysis algorithm to reduce
the dimensionality of the SIFT descriptor and extracts the
dimensions with larger values. PCA-SIFT greatly reduces the
complexity of the original SIFT. Affine-SIFT (ASIFT) [26]
extends SIFT to be invariant to affine transformations by
simulating two camera axis direction parameters. The ORB
(Oriented FAST and Rotated BRIEF) [27] algorithm uses
the features from accelerated segment test (FAST) [28] to
extract feature points and utilises the directional binary robust
independent elementary features (BRIEF) [29] algorithm for
feature description. This method has low time complexity
and is suitable for real-time applications, but it is not scale-
invariant. In the field of photogrammetry and remote sens-
ing, the SIFT algorithm has also been widely adopted due
to its robustness to illumination, rotation, scale, noise, and
viewpoint changes. However, because remote sensing images
are captured by different sensors, at different times, and with
different viewpoints, there are large geometric distortions and
radiation distortions between remote sensing image pairs.
To solve this problem, scholars have proposed many improved
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algorithms. Uniform robust SIFT (UR-SIFT) [30] studies the
distribution of SIFT feature points and proposes an entropy-
based feature point selection strategy to improve the distri-
bution uniformity. Uniform competency (UC) detector [31]
proposes a novel competency criterion based on a weighted
ranking process, which considers the robustness, scales and
spatial saliency of a feature. Hence, it has better location
distribution and matching quality than Harris [32] detector,
SIFT detector, SURF detector and maximally stable extremal
region (MSER) [33] detector. SAR-SIFT [16] introduces a
new gradient definition based on the specific characteristics
of SAR images to improve the robustness to speckle noise.
Adaptive binning SIFT (AB-SIFT) [34] adopts an adaptive
binning gradient histogram to describe feature points, making
it more resistant to local geometric distortions. Sedaghat and
Mohammadi [35] combined an improved SURF detector and
AB-SIFT for feature matching, and presented a localized graph
transformation for outlier removal. Ye et al. [36] proposed a
feature detector (MMPC-Lap) and a feature descriptor named
local histogram of orientated phase congruency (LHOPC) for
multisensor image matching, which is robust to illumination
and contrast variations. However, these feature-based methods
are sensitive to NRD and are not suitable for multimodal
images, such as SAR-optical, depth-optical, map-optical, etc.

This paper aims to solve the problem of radiation distor-
tions in image matching, especially the problem of NRD.
Multi-modal images are typical images with NRD. At present,
the research of multi-modal image matching mostly focuses
on medical images, and there are few studies that address
the processing of multimode remote sensing images. How-
ever, multi-modal remote sensing image matching has very
important theoretical and practical significance. Theoretically,
this problem is very difficult, and it is a bottleneck problem of
image matching technology. In fact, many applications require
automatic matching of multi-modal images, such as informa-
tion fusion of optical and SAR images. In the next section,
we will briefly review the state-of-the-art of multi-modal
image matching.

C. Multi-Modal Image Matching

Recently, the multi-modal image matching task has drawn
increasingly more attention, and several algorithms have
been proposed. For example, local self-similarity descrip-
tor (LSS) [37], partial intensity invariant feature descrip-
tor (PIIFD) [38], distinctive order-based self-similarity
descriptor (DOBSS) [39], ARRSI [40], histogram of orien-
tated phase congruency (HOPC) [41], and phase congruency
structural descriptor (PCSD) [42]. Among them, ARRSI and
HOPC are the most similar to the proposed RIFT.

ARRSI detects feature points and performs normalised
cross-correlation (NCC) [43] matching on the maximum
moment map of PC. Although both ARRSI and the proposed
RIFT use a PC measure for feature detection, RIFT is quite
different from ARRSI. First, ARRSI does not construct a
feature vector and uses NCC to search matches, which is
essentially a template matching method, while RIFT is a
feature matching method. Second, RIFT originally proposed a

MIM measure for feature description. Third, RIFT is invariant
to rotation changes while ARPSI is not.

HOPC extends the PC model to include not only numerical
information but also corresponding orientation information.
Then, a modified similarity measure, HOPCncc, is presented
based on the improved PC measure and NCC. Unfortunately,
HOPC suffers from three major problems:

(1) HOPC needs to know the exact geographic information
corresponding to the image to perform geometric correc-
tion. In practice, however, the geographical information
of an image may not be accurate enough or may be
unavailable. For example, the geographical information
of a satellite image may be hundreds of metres away
from its actual geographical location. In such cases,
HOPC is completely unusable.

(2) Although HOPC performs feature detection on the refer-
ence image, it is essentially a template matching method,
rather than a feature-based method, and therefore is
sensitive to rotation, scale, etc. Template matching meth-
ods usually perform a 2D search, which becomes a 1D
search after adding the epipolar constraint. HOPC relies
on accurate geographic information, whose search space
is small, usually a local window of 20 × 20 pixels.

(3) HOPC uses Harris detector to detect the feature points.
However, Harris is very sensitive to NRD, and it is
difficult to be universally suitable for different types of
multi-modal images. Especially, when a depth map is
used as the reference image, the performance of Harris
becomes very poor. Feature detection is the basis of
feature matching method, which determines the number
of correct matches between two sets of points and point
location accuracy. If the number of features is too small,
the matching result must be very poor.

In contrast, RIFT does not rely on geographic information.
RIFT has good robustness to NRD, regardless of the feature
detection or feature description stage, and achieves rotation
invariance.

III. RADIATION-VARIATION INSENSITIVE

FEATURE TRANSFORM (RIFT)

In this section, we will detail the proposed RIFT method,
including feature detection and feature description stages.

A. Feature Detection

Classical feature matching methods generally rely on image
intensity or gradient information, which is spatial domain
information. In addition to spatial domain information, images
can also be described using frequency domain information,
such as phase information. The theoretical basis of phase is
the Fourier transform (FT) theorem [44]. FT can decompose an
image into an amplitude component and a phase component.
Oppenheim and Lim [45], for the first time, revealed the
importance of phase information for the preservation of image
features. Phase information has high invariance to image con-
trast, illumination, scale, and other changes. Further, Morrone
and Owens [46] discovered that certain points in the image
could cause a strong response on the human visual system,
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and these points usually have highly consistent local phase
information. Hence, the degree of consistency of local phase
information at different angles is called the PC measure.

1) Recall on Log-Gabor Filter: The 2D log-Gabor filter
(2D-LGF) [47], [48] can generally be obtained by Gaussian
spreading of the vertical direction of the log-Gabor filter
(LGF). Thus, the 2D-LGF function is defined as follows,

L(ρ, θ, s, o) = exp(
−(ρ − ρs)

2

2σ 2
ρ

) exp(
−(θ − θso)

2

2σ 2
θ

) (1)

where (ρ, θ) represents the log-polar coordinates; s and o are
the scale and orientation of 2D-LGF, respectively; (ρs , θso) is
the centre frequency of 2D-LGF; σρ and σθ are the bandwidths
in ρ and θ , respectively.

LGF is a frequency domain filter, whose corresponding
spatial domain filter can be obtained by inverse Fourier
transform. In the spatial domain, 2D-LGF can be represented
as [41], [49],

L(x, y, s, o) = Leven(x, y, s, o)+ i Lodd(x, y, s, o) (2)

where the real part Leven(x, y, s, o) and the imaginary part
Lodd(x, y, s, o) stand for the even-symmetric and the odd-
symmetric log-Gabor wavelets, respectively.

2) Recall on Phase Congruency (PC): Let I (x, y) denote
a 2D image signal. Convolving the image I (x, y) with the
even-symmetric and the odd-symmetric wavelets yields the
response components Eso(x, y) and Oso(x, y),

[Eso(x, y), Oso(x, y)]
= [I (x, y) ∗ Leven(x, y, s, o), I (x, y) ∗ Lodd(x, y, s, o)]

(3)

Then, the amplitude component Aso(x, y) and the phase
component φso(x, y) of I (x, y) at scale s and orientation o
can be obtained by,

Aso(x, y) =
√

Eso(x, y)2 + Oso(x, y)2 (4)

φso(x, y) = arctan(Oso(x, y)/Eso(x, y)) (5)

Considering the analysis results in all directions and all
orientations, and introducing the noise compensation term T ,
the final 2D PC model is (more details about the 2D PC model
can be found in Reference [50]):

PC(x, y) =
∑
s

∑
o
wo(x, y) �Aso(x, y)��so(x, y)− T �∑

s

∑
o

Aso(x, y)+ ξ

(6)

where wo(x, y) is a weighting function; ξ is a small value;
�·� operator prevents the enclosed quantity from getting a
negative value; that is, it takes zero when the enclosed quantity
is negative. ��so(x, y) is a phase deviation function, whose
definition is,

Aso(x, y)��so(x, y)

= (Eso(x, y)φ̄E (x, y)+ Oso(x, y)φ̄O(x, y))

− |(Eso(x, y)φ̄O(x, y)− Oso(x, y)φ̄E (x, y))| (7)

where,

φ̄E (x, y) =
∑

s

∑
o

Eso(x, y)/C(x, y) (8)

φ̄O (x, y) =
∑

s

∑
o

Oso(x, y)/C(x, y) (9)

C(x, y) =
√
(
∑

s

∑
o

Eso(x, y))2 + (
∑

s

∑
o

Oso(x, y))2

(10)

3) Corner and Edge Features: Several image matching
methods [51]–[53] have adapted the PC measure for feature
detection. Differently, RIFT combines corner features and edge
features. In addition, these methods generally use SIFT or
a local binary pattern (LBP) for feature description, which
are very sensitive to NRD and not suitable for multi-modal
images.

Based on equation (6), we can obtain a very precise edge
map, i.e., the PC map. However, this formula ignores the effect
of orientation changes on the PC measure [54]. To get the
relations between the PC measure and orientation changes,
we compute an independent PC map PC(θo) for each ori-
entation o, where θo is the angle of orientation o. We then
calculate the moments of these PC maps and analyse the
moment changes with the orientation

According to the moment analysis algorithm [55], the axis
corresponding to the minimum moment is called the principal
axis, and the principal axis usually indicates the direction
information of the feature; the axis corresponding to the
maximum moment is perpendicular to the principal axis, and
the magnitude of the maximum moment generally reflects
the distinctiveness of the feature. Before calculation of the
minimum and maximum moments, we first compute three
intermediate quantities,

a =
∑

o

(PC(θo) cos(θo))
2 (11)

b = 2
∑

o

(PC(θo) cos(θo))(PC(θo) sin(θo)) (12)

c =
∑

o

(PC(θo) sin(θo))
2 (13)

Then, the principal axis ψ , minimum moment Mψ , and
maximum moment mψ are given by,

ψ = 1

2
arctan(

b

a − c
) (14)

Mψ = 1

2
(c + a +

√
b2 + (a − c)2) (15)

mψ = 1

2
(c + a −

√
b2 + (a − c)2) (16)

The minimum moment mψ is equivalent to the cornerness
measure in the corner detector. In other words, if the value
of mψ at a point is large, the point is most likely to be
a corner feature; and the maximum moment Mψ is the
edge map of an image, which can be used for edge feature
detection. Specifically, we first compute mψ and Mψ of the
PC maps. For the minimum moment map mψ , local maxima
detection and non-maximal suppression are performed, and
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Fig. 1. Feature detection.

the remaining points are accepted as corner features. Because
edge structure information has better resistance to radiation
distortions, we also use the maximum moment map Mψ to
detect the edge feature points, that is, perform FAST feature
detection on Mψ . Therefore, the proposed method integrates
corner features and edge features for feature matching.

Fig. 1 shows an example of feature detection, where
Fig. 1(a) is a pair of multi-modal images (an optical satellite
image and a LIDAR depth map); Fig. 1(b) and Fig. 1(c)
are the minimum moment map mψ and maximum moment
map Mψ , respectively; Fig. 1(d) is the result of FAST [28]
feature detection; Fig. 1(e) and Fig. 1(f) are our corner features
and edge features, respectively. From the results, we can draw
several conclusions: (1) Comparing Fig. 1(b) and Fig. 1(f),
we find that traditional feature detectors based on image
intensity or gradient (such as FAST or Harris detectors) are
very sensitive to NRD, while the moments of PC measures
have good invariance to NRD. A large number of reliable
feature points can be obtained by performing the same FAST
or Harris detector on the maximum moment of PC maps.
(2) From Fig. 1(e), it can be seen that the obvious corner
features can be obtained. However, the number of feature
points is relatively small. (3) From Fig. 1(f), it can be seen that
more feature points can be detected on the maximum moment
map, but many corner features are missed.

Thus, the combination of the characteristics of the minimum
moment map corner features and the maximum moment map
edge features not only ensures the high repeatability of the
features but also the large number of features, which lays a
foundation for subsequent feature matching.

B. Feature Description

Once feature points are detected, feature description
is needed to increase the distinction between features.
Classical feature descriptors generally use image intensity or
gradient distribution to construct feature vectors. However,
as mentioned earlier, both intensity and gradient are very
sensitive to NRD. These descriptors are not suitable for the
multi-modal image matching task. In the above, we analysed

the characteristics of the PC measure, whose advantage is
the robustness to NRD. Intuitively, using a PC map instead
of an intensity map or gradient map for feature description
is more suitable. However, experimental results do not reach
our expectations. Specifically, we selected an image pair that
was composed of an SAR satellite image and an optical
satellite image for testing (see Fig. 2(a)). We first compute
the PC maps (see Fig. 2(b)) and detect corner and edge
features from each image (see Fig. 2(c)). Then, for each
feature, we construct a feature vector based on the distribution
histogram technique similar to SIFT. The matching result
based on the PC map description is shown in Fig. 2(d).

From Fig. 2, we can see that the number and distribution of
extracted features are quite good; however, the matching result
is very poor, as the matches are almost all outliers. It shows
that the PC map is not quite suitable for feature description.
The reasons may be as follows. First, there is less information
from the PC map since most pixel values in the PC map are
close to zero. It is not robust enough for feature description.
Second, the PC map is sensitive to noise because it mainly
contains edges, which causes the feature description to be
inaccurate. With such analyses, we present a MIM measure
instead of a PC map for feature description.

1) Maximum Index Map (MIM): A MIM is constructed
via the log-Gabor convolution sequence. The convolution
sequence was obtained in the PC map calculation stage.
Therefore, the computation complexity of a MIM is very
small. Fig. 3 illustrates the construction of a MIM. Given
an image I (x, y), we first convolve I (x, y) with a 2D-LGF
to obtain the response components Eso(x, y) and Oso(x, y);
and then calculate the amplitude Aso(x, y) at scale s and
orientation o. For orientation o, the amplitudes of all Ns scales
are summed to obtain a log-Gabor layer Ao(x, y),

Ao(x, y) =
Ns∑

n=1

Aso(x, y) (17)

The log-Gabor convolution sequence is obtained by arrang-
ing the log-Gabor convolution layers in order, which is a
multi-channel convolution map {Aωo (x, y)}No

1 , where No is
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Fig. 2. Comparison of MIM with PC.

Fig. 3. The construction of a MIM.

the number of orientations; the superscript ω = 1, 2, . . . , No

represents the different channels of the log-Gabor convolution
sequence. Thus, for each pixel position (x j , y j ) of the con-
volution map, we can get an No-dimensional ordered array
{Aωo (x j , y j )}No

1 . Then, find the maximum value Amax(x j , y j )
and its corresponding location channel ωmax in this array by
[Amax(x j , y j ), ωmax] = max{{Aωo (x j , y j )}No

1 }. We set ωmax as
the pixel value of position (x j , y j ) in the MIM.

After obtaining the MIM, we use a distribution histogram
technique similar to SIFT for feature vector description.
In detail, for each feature point, we select a local image patch
with J × J pixels centred at the feature and use a Gaussian
function whose standard deviation is equal to J/2 to assign
weights for each pixel. This process avoids abrupt changes
in the feature description if the window position changes.

We then divide the local patch into 6 × 6 sub-grids and
build a distribution histogram with No bins for each sub-grid
because the values of MIM range from 1 to No. The feature
vector is obtained by concatenating all the histograms. Thus,
the dimension of the feature vector is 6 × 6 × No . To gain
invariance to illumination changes, we finally normalise the
feature vector.

A matching example based on the MIM description is
given in Fig. 2, where Fig. 2(e) is the MIM corresponding
to Fig. 2(a), and Fig. 2(f) is the matching result. In this exper-
iment, we set No = 6 and use the MIM instead of a traditional
gradient for the feature description. We regard the feature point
pairs with minimal Euclidean distance as potential matches
and apply the NBCS [10] method for outlier removal. As seen,
the proposed method can extract a large number of reliable
matches with relatively uniform distribution, even in the SAR
and optical image pair. The imaging mechanisms of SAR
and the optical sensors are quite different, which results in
large NRD between the SAR image and optical image. Thus,
it shows that the proposed MIM descriptor is very suitable for
the multi-modal image matching task and is much better than
traditional feature matching methods.

2) Rotation Invariance: The previous section analysed the
possibility and validity of the MIM for feature description
and described the feature vector construction details. However,
the description method assumes that there are no rotations
between an image pair; that is, the rotation changes are not
considered. Thus, if there is a rotation change in the image
pair, the above method will no longer be suitable. Therefore,
special processing must be performed to make it rotationally
invariant. The most straightforward idea is to use the dominant
orientation method similar to SIFT. However, after extensive
experiments, we found that rotation invariance cannot be
achieved by a dominant orientation method.

To analyse the reasons, two experiments are performed.
Fig. 4 analyses the effect of the rotations on the gradient map,
where Fig. 4(a) is a LIDAR point cloud depth map; Fig. 4(d)
is obtained by rotating Fig. 4(a) clockwise 30◦; Fig. 4(b) and
Fig. 4(e) are the gradient maps of Fig. 4(a) and Fig. 4(d),
respectively. To eliminate the rotational difference between
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Fig. 4. The effect of rotations on the gradient map.

Fig. 5. The effect of rotations on a MIM.

Fig. 4(b) and Fig. 4(e), Fig. 4(b) is rotated clockwise by 30◦ to
obtain Fig. 4(c); Fig. 4(f) is the difference between Fig. 4(b)
and Fig. 4(e). According to Fig. 4(f), the gradient maps
after removing the rotation difference are basically the same,
indicating that the rotation has no influence on the values of the
gradient map. Therefore, by calculating the main orientation
of the feature point, the rotation difference between the local
image patches can be eliminated, thereby achieving rotation
invariance. Similarly, the above analysis is also performed on
the MIM, as shown in Figure 5. Fig. 5(b) and Fig. 5(e) are
the MIMs of Fig. 5(a) and Fig. 5(d), respectively; Fig. 5(c)
is obtained by rotating Fig. 5(b) clockwise 30◦; Fig. 5(f) is
the difference between Fig. 5(b) and Fig. 5(e). The dominant
orientation method can be applied only if Fig. 5(c) is similar
enough to Fig. 5(e). However, most of the values of Fig. 5(f)
are not close to zero, indicating that there is not only a
rotation difference between Fig. 5(c) and Fig. 5(e) but also a
numerical difference, and this numerical difference is caused
by the rotations. Thus, to achieve rotation invariance, we must
determine the relationship between rotations and the values of
the MIM.

As mentioned previously, the MIM is constructed based on
the log-Gabor convolution sequence, and the convolution layer
is closely related to the orientations. Therefore, if the start

Fig. 6. Convolution sequence ring.

layer of the log-Gabor convolution sequence is different, then
the constructed MIM is completely different.

In other words, if two images are to be successfully
matched, the log-Gabor convolution sequences corresponding
to the two images must be highly similar, and each layer
of the log-Gabor convolution sequence needs to be similar.
In fact, the log-Gabor convolution sequence can be thought of
as an end-to-end annular structure, as shown in Fig. 6. Assume
that Fig. 6(a) is a 6-layers log-Gabor convolution sequence
ring (noted by SA) obtained from the original image (image
in Fig. 4(a)), where the first layer is the 0◦ direction convo-
lution result (the initial layer of the convolution sequence);
the second layer is the 30◦ direction convolution result, and
so on. The sixth layer is the 150◦ direction convolution result.
However, if we rotate the image by an angle (as shown
in Fig. 6(b)), and still use the 0◦ direction convolution result
as the initial layer to construct the convolution sequence
(obtaining convolution sequence SB), due to the effect of the
rotation, the content of the initial layer of SA will be quite
different from SB . In fact, which layer should be used as the
initial layer is not known because it is highly related to the
rotation angle. Considering that No is small and generally set
to 6, we use the simplest traversal strategy, listing all possible
scenarios. In detail, we first construct a convolution sequence
SA and a convolution sequence SB for the reference image
and the target image, respectively. For SA of the reference
image, we directly construct a MIM (M I M SA ); for SB of the
target image, we successively transform the initial layer of
SB to reconstruct a set of convolution sequences {SB

w }No
1 with

different initial layers and then calculate a MIM from each
convolution sequence to obtain a set of MIMs {M I M SB

w }No
1 .

In general, there is always a MIM in set {M I M SB
w }No

1 that is
similar to M I M SA . To verify this conclusion more intuitively,
we perform an experiment on the image in Fig. 4(d) to obtain
the MIM set {M I M SB

w }No
1 (No = 6). Fig. 7 shows all the

MIMs in the set {M I M SB
w }No

1 . The initial layers of {SB
w }No

1
are the first to sixth layers of the convolution sequence SB .
As seen, if the initial layers are different, the resulting MIM
is completely different. Fig. 8 shows the difference between
each subfigure in Fig. 7 and Fig. 5(c). It is found that when
the sixth layer is used as the initial layer, the constructed MIM
M I M SB

6 is very consistent with M I M SA , which verifies the
above conclusion.

The above process substantially eliminates the effect of
rotations on the values of the MIM. Then, the dominant
orientation method can be directly applied to gain rotation
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Fig. 7. MIM set {M I M
SB
w }No

1 (No = 6). The initial layers of are the first to sixth layers of the convolution sequence SB .

Fig. 8. Error map between each subfigure in Fig. 7 and Fig. 5(c).

Fig. 9. Sample data.

invariance. In summary, the proposed RIFT algorithm builds
a feature vector for each keypoint of the reference image and
No feature vectors for each keypoint of the target image.

IV. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed RIFT method,
we select several multi-modal datasets for qualitative and
quantitative evaluation. We compare our RIFT algorithm
against four state-of-the-art algorithms, i.e., SIFT, SAR-SIFT,
LSS, and PIIFD. LSS is only a feature descriptor; hence,
we use the proposed detector to extract features. For a fair
comparison, the sizes of local description patches for these
five methods are set to the same; and the implementation of
each compared method are obtained from the authors’ personal
website. The parameters of each method are fine-tuned to
obtain the best performance and are consistent in all exper-
iments.

A. Datasets

Six types of multi-modal image datasets are selected as
experimental sets, including optical-optical, infrared-optical,
SAR-optical, depth-optical, map-optical, and day-night. Each

type of dataset contains 10 image pairs for a total of 60 multi-
modal image pairs. The sample data are shown in Fig. 9.

These image pairs include not only multi-sensor images and
multi-temporal images but also artificially produced images,
such as rasterised map data; not only images under good
lighting conditions (daytime images) but also nighttime remote
sensing images; not only high spatial resolution images but
also low and medium spatial resolution images, whose GSD
ranges from 0.1 metres to hundreds of metres; not only satellite
images but also UAV images and even close-range images; not
only urban area images but also countryside and mountain
forest images. There are serious distortions between these
image pairs, especially radiation distortions, which will create
great challenges for the image matching algorithms. Such
challenges can test the validity and robustness of the proposed
RIFT algorithm more comprehensively. It should be noted
that RIFT is currently not scale invariant. Therefore, the two
images of each image pair need to be resampled to have
approximately the same GSD.

For better quantitative evaluation, we need to obtain a
ground truth geometric transformation between each image
pair. However, due to the interference of various factors,
the real datasets usually do not have a true ground truth
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TABLE I

THE DETAILS OF PARAMETER SETTINGS

TABLE II

THE RESULTS OF PARAMETER No

geometric transformation. The approximate ground truth geo-
metric transformation is generally used for evaluation. Specif-
ically, for each image pair, we select five evenly distributed
correspondences with sub-pixel accuracy and use these cor-
respondences to estimate an accurate affine transformation
as the approximation of the ground truth geometric trans-
formation. We first perform feature matching on this image
pair (RIFT/SIFT/SAR-SIFT) and remove the outliers based
on the NBCS [10] method; then, we calculate the residuals
of these image correspondences under the estimated affine
transform and regard the correspondences with residuals less
than 3 pixels as the correct matches. We use the number
of correct matches (NCM), root mean square error (RMSE),
mean error (ME), and success rate (SR) as the evaluation
metrics. Note that if the NCM of an image pair is less than
four, the matching is considered to have failed.

B. Parameter Study

The proposed RIFT method contains three main parame-
ters, namely, Ns , No , and J . Parameter Ns is the number
of convolution scales of the log-Gabor filter, and its value
is usually greater than 1. Parameter No is the number of
convolution orientations of the log-Gabor filter. In general,
the higher the number of orientations is, the richer the amount
of information of the constructed MIM and the higher the
computational complexity. Parameter J is the size of the local
image patch used for feature description. If the local patch is
too small, it contains insufficient information, which does not
adequately reflect the distinctiveness of the feature. In contrast,
if the image patch is too large, it is easily affected by the local
geometric distortion. Therefore, suitable parameters are very
important. This section performs a parameter study and sensi-
tivity analysis based on a map-optical dataset. We design three
independent experiments to learn parameters Ns , No , and J ,
where each experiment has only one parameter as a variable
and other parameters are fixed values. The experimental setup
details are summarised in Table 1. For each parameter, we use
NCM and SR as the evaluation metrics. The experimental
results are reported in Table 2∼Table 4.

From the experimental results, we can infer that (1) larger
values of No mean that richer information of the constructed

TABLE III

THE RESULTS OF PARAMETER Ns

TABLE IV

THE RESULTS OF PARAMETER J

MIM, and thus more NCM, can be obtained; however, larger
values of No also mean that the number of convolution
sequences increases, which will greatly increase the compu-
tational complexity of the algorithm. From Table 2, when No

reaches 6, the SR of RIFT reaches 100%. However, increasing
the number of orientations only slightly improves the NCM.
Therefore, to take into account both the matching performance
and computational complexity of RIFT, we set No to 6. (2)
From Table 3, we can see that small values of Ns result
in low SR accuracy and large values of Ns result in poor
NCM performance. When Ns = 4, RIFT achieves the best
performance in both SR and NCM metrics. Although the
results of Ns = 3 are only slightly different from the results
of Ns = 4, the number of scales is different from the number
of directions, and increasing the scales does not significantly
increase the computational complexity. Therefore, we set Ns

to 4. (3) The influence of the parameter J on RIFT is similar
to Ns . If the value of J is small, the amount of information is
not rich enough, and the SR and NCM metrics will be poor;
however, if the value of J is large, due to the effect of local
geometric distortions, the performance of NCM will decrease.
As shown in Table 4, RIFT achieves the best performance
when J = 96. To reduce computational complexity, we select
J = 72. Based on the experimental results and analyses, these
parameters are fixed to No = 6, Ns = 4, J = 72 in the
following experiments.

C. Detector Evaluation

We compare the detector of RIFT with other six well-known
feature detectors, including FAST [28], Harris [32], Brisk [56],
SIFT [15], SURF [24], and MSER [33]. We use the repeata-
bility Rep and the number of correspondences Nc that can
be established for detected features as evaluation metrics. The
repeatability is a ratio between Nc and the average number of
features detected in two images I1 and I2 [57],

Rep = Nc

(n1 + n2)/2
=

∣∣{‖ x1
i − Hx2

i ‖< 3}n1
i=1

∣∣
(n1 + n2)/2

(18)

where H is the ground truth transformation between I1 and I2;
x1

i and x2
i are homogeneous coordinates of a feature in

I1 and I2, respectively; n1 and n2 are the number of features
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TABLE V

EVALUATION FEATURE DETECTORS ON MULTI-MODAL IMAGE DATASETS

in I1 and I2, respectively;
∣∣{‖ x1

i − Hx2
i ‖< 3}n1

i=1

∣∣ returns the
number of matches that satisfy ‖ x1

i − Hx2
i ‖< 3.

We use the whole 60 multi-modal image pairs as the
evaluation dataset and compute the average repeatability and
the average number of correspondences for each detector.
The results are summarized in Table 5. To show the stability
of each detector, Table 5 also reports two ratio metrics,
i.e., rNc>100 and rRep>10%, whose definitions are as follows,⎧⎨

⎩
rNc>100 =

∣∣∣{Nc
i > 100}Nip

1

∣∣∣/Nip

rRep>10% =
∣∣∣{Repi > 10%}Nip

1

∣∣∣/Nip

(19)

where Nip is number of image pairs in the evaluation dataset.
As shown, all the detectors have low repeatability on

the multi-modal image datasets because of serious NRDs,
which means that matching multi-modal image pairs is a
very challenging task. Among these six detectors, FAST and
SURF perform much better than others. FAST has higher
repeatability and obtains more correspondences than SURF,
while getting lower rNc>100 and rRep>10% values. Considering
the performance and the efficiency of FAST, we apply it
on the maximum moment map to detect edge features. The
detector of RIFT ranks best in all the four metrics. It gains
5.5 percentages in terms of Rep and 179.4 correspondences
in terms of Nc compared with FAST, which ranks second.

D. Rotation Invariance Test

Rotation invariance is an important property of the proposed
RIFT, which is also a major advantage compared to the HOPC
method. The calculation of MIMs and PC maps are both
related to orientations. The proposed RIFT algorithm generally
performs log-Gabor convolution filtering along six directions,
i.e., 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦. The angles of these
directions only range from 0◦ to 150◦, which inevitably raises
the concern: “If the rotation angle between the image pairs is
not within this range, is the proposed RIFT still robust?”

In fact, the proposed RIFT has very good rotation invari-
ance, not only for the rotations between [0◦ ∼ 150◦] but
also for the rotations in the entire 360◦ range. To verify
this conclusion, an image pair was selected from the map-
optical dataset for experimentation. This image pair does not
suffer from rotation changes. First, we rotate the map of this
image pair. The rotation angles are from 0◦ to 359◦ with an
interval of 5◦. Thus, a total of 72 maps are obtained (the
rotation angles are [0◦, 5◦, 10◦, . . . , 345◦, 350◦, 355◦, 359◦]).
These 72 maps and the optical image constitute 72 image pairs.
Then, these images are processed one by one using RIFT,

Fig. 10. Rotation invariance test.

Fig. 11. Matching and registration results.

and their corresponding NCMs are plotted in Fig. 10. The red
dots in the figure represent the NCMs. It can be clearly seen
that although the NCMs under different rotation angles are
different, all the NCMs are greater than 40, indicating that the
proposed RIFT can successfully match all the image pairs, and
the matching SR accuracy is 100%, which also verifies that
the proposed RIFT has good rotation invariance for rotations
in the entire 360◦ interval. Meanwhile, the differences in the
NCMs also indicate that the dominant orientation calculation
of RIFT may not be optimal, and a more robust feature main
orientation calculation method will further improve the match-
ing performance of the proposed RIFT, which will become
one of our key research topics in the future. Fig. 11 shows
the experimental results for 150◦ rotation and 210◦ rotation.
Among them, the first row is the results of feature matching
(yellow lines in the figure represent correct matches), and
the second row is the registration results. It can be seen that
the NCMs are large; the distribution of matching points is
relatively uniform, and the registration accuracy is very high.

E. Matching Performance Test

1) Qualitative Comparisons: we select the first image pairs
from the six multi-modal datasets for evaluation, as shown
in Fig. 9. Among them, Fig. 9(a) contains translation, small
rotation, and small-scale changes; Fig. 9(b) includes a trans-
lation change and a 90◦ rotation change; Fig. 9(c), Fig. 9(e),
and Fig. 9(f) includes both translation and rotation changes;
Fig. 9(d) only contains a translation change. Since these image
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Fig. 12. Qualitative comparison results on the sample data. The red circles and the green crosshairs in the figure indicate the feature points on the reference
image and the target image, respectively; the yellow lines and the red lines indicate the correct matches and the outliers, respectively.

pairs are all multi-modal image pairs, the imaging mechanism
is quite different, and these image pairs contain severe NRD.
Therefore, matching on these image pairs is very challenging.
Fig. 12 plots the results of SIFT, SAR-SIFT, LSS, PIIFD, and
the proposed RIFT, respectively.

As seen, SIFT algorithm fails to match on the first, second,
and fourth image pairs in Fig. 12(a). The SR accuracy is
50%. However, even if the matching is successful, the NCMs
are also small, i.e., 24, 24, and 23. Because SIFT algorithm
uses gradient histograms for feature description, the matching
results depend heavily on the similarity of the gradient maps of
the image pair. The above analysis shows that the gradient map
is very sensitive to NRD, which is the fundamental reason for
its poor matching performance on multi-modal images. SAR-
SIFT algorithm fails to match on the first, second, fourth,
and fifth image pairs in Fig. 12(b). The SR accuracy is
only 33.3%. Similarly, the NCMs for SAR-SIFT are also
small, 6 and 8, respectively. Although SAR-SIFT redefines
the concept of the gradient to fit the SAR image matching
task, the redefined gradient is even more sensitive to NRD.
In addition, SAR-SIFT uses a multiscale Harris detector for
feature detection. The detector usually obtains fewer feature
points and cannot obtain any keypoints on some images. For
example, the number of feature points detected by SAR-SIFT
on the Google map in Fig. 12(b) is 0; thus, the NCM must
be 0. LSS fails on all these six image pairs. PIIFD only
matches successfully on the second image pair. In contrast,
the proposed RIFT algorithm matches successfully on all these
six image pairs, whose SR accuracy is 100%. The NCMs of
RIFT are large, i.e., 41, 368, 335, 66, 230 and 93. The average
NCM of RIFT is approximately 7.8 times that of SIFT.

The matching performance of RIFT on the image pairs with
NRD is far superior to the current popular feature matching
methods. There are two main reasons: (1) RIFT uses a PC map
instead of image intensity for feature detection, and considers
both the feature repetition rate and the feature number, which
lays a foundation for subsequent matching. (2) RIFT adopts
the log-Gabor convolution sequence to construct a MIM
instead of a gradient map for feature description. The MIM
has very good robustness to NRD, thus ensuring the accuracy
of the feature vectors. Fig. 13 shows more results of RIFT.

2) Quantitative Comparisons: Fig. 14 is the quantitative
results of the NCM metric, where Fig. 14(a)∼Fig. 14(f)
show the results of the three comparison methods on the
six multi-modal datasets. As seen, SIFT performs better on
the optical-optical dataset and the day-night dataset than the
other 4 datasets because of its resistance to illumination
changes. In the optical-optical dataset, the difference in the
imaging mechanism between images is smaller than that of
the other four datasets, and matching is relatively easy. The
day-night dataset is also essentially an optical-optical dataset.
The difference is that the light conditions of the day-night
dataset are more complex. SIFT performs the worst on the
depth-optical dataset. The SR accuracy is zero, and no correct
matches are obtained. The reasons may be as follows: (1) SIFT
uses gradient information for feature description. The gradient
can reflect the structural information (edge information) of
an image to a certain extent. However, in a depth map or
disparity map, the edge structure is relatively weak. (2) SIFT
detects feature points directly based on intensity. The number
of extracted feature points is small, and the distribution is
poor, (especially in-depth maps and disparity maps, as shown
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Fig. 13. More results of the proposed RIFT. For better visualization, no more than 100 matches are displayed.

Fig. 14. Comparisions on NCM metric. (a) Optical-optical. (b) Infrared-optical. (c) SAR-optical. (d) Depth-optical. (e) Map-optical. (f) Day-night.

in Fig. 1), resulting in poor matching performance. In most
of the successfully matched image pairs, the NCMs of SIFT
are very small (smaller than 50). In some images, there are
only a few correctly matching points. The performance of
SAR-SIFT is similar to that of the SIFT algorithm, and its
performance on the optical-optical dataset, the SAR-optical
dataset, and the day-night dataset is superior to the other
4 datasets. As described above, the difference in the imaging

mechanism between the image pairs of the optical-optical and
day-night dataset is relatively small. Because the SAR-SIFT
algorithm is specifically designed for SAR image matching
and the gradient concept is redefined, it may be more suitable
for the SAR-optical dataset. SAR-SIFT performs the worst
on the infrared-optical dataset and the map-optical dataset
and almost fails completely. The radiation characteristics
of the infrared-optical datasets are quite different, and the
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TABLE VI

COMPARISONS ON SR METRIC

radiation characteristics of most objects are completely oppo-
site. As shown in Fig. 9(b), black objects in the optical image
appear white in the infrared image. Therefore, the redefined
gradient may be more sensitive to this inverse difference.
As previously analysed, a multi-scale Harris detector has dif-
ficulty extracting feature points on the map of the map-optical
dataset, which will inevitably lead to a matching failure. The
NCMs of SAR-SIFT are also very small in most of the
successfully matched image pairs. However, on a few image
pairs, such as image pair 9 of the SAR-optical dataset, the
NCM obtained by SAR-SIFT is even larger than the proposed
RIFT. In general, the matching performance of SAR-SIFT
is extremely unstable. LSS performs much better on the
infrared-optical dataset than the depth-optical and map-optical
datasets. PIIFD totally fails on the depth-optical and map-
optical datasets. In contrast, the proposed RIFT successfully
matches all the image pairs of the six datasets, and the NCMs
are much greater than 50 on most of the image pairs. The
matching performance of RIFT is very stable and robust, and
it is hardly affected by the type of radiation distortions. RIFT
is far superior to other methods.

Table 6 summarises the matching SRs of the six methods
on each data set. As shown, SIFT has the highest SR on the
optical-optical dataset, which is 60%; the SRs of SAR-SIFT on
the optical-optical, the SAR-optical, and the day-night datasets
are all 40%; both LSS and PIIFD achieves the highest SRs on
the infrared-optical dataset, i.e., 50% and 60%, respectively;
and the SRs of the proposed RIFT on all datasets are 100%.
The average SRs of SIFT, SAR-SIFT, LSS, PIIFD, and RIFT
on all six datasets are 30%, 23.3%, 30%, 20%, and 100%,
respectively. Compared with SIFT and LSS, the proposed
RIFT improves by 70 percent. Fig. 15 plots the average ME
and RMSE of the proposed RIFT on each image pair. Because
other methods have insufficient SR accuracy, their correspond-
ing ME and RMSE are not calculated. As seen, the MEs and
RMSEs of RIFT are between 1 pixel and 2.5pixels. There are
many reasons for these errors, such as ground truth geometric
model estimation error, estimated geometric model error, and
the error of feature point positioning. Table 7 reports the
NCM, ME, and RMSE of the proposed RIFT on each dataset.
From the table, the NCMs of RIFT are relatively large and
very stable, all of which are approximately 100; the matching
precision is high, where the ME is approximately 1.75 pixels,
and the RMSE is approximately 1.9 pixels. As mentioned
earlier, RIFT is not affected by the type of radiation distortions.
The average NCM, ME, and RMSE over all 60 image pairs
are 119.3, 1.72 pixels, and 1.88 pixels, respectively.

TABLE VII

QUANTITATIVE EVALUATION RESULTS OF RIFT

TABLE VIII

RUNNING TIME COMPARISONS (SECONDS)

Summarising the above qualitative and quantitative exper-
imental results, we can draw the following conclusions: The
proposed algorithm is specially designed for NRD problems,
including feature detection and feature description. Therefore,
the proposed algorithm has very good resistance to NRD and
is not affected much by the type of radiation distortions. The
proposed method achieved very good NCMs and matching
accuracy on all six datasets. The matching performance of
RIFT is far superior to the current classical feature matching
methods. The proposed RIFT is a feature matching algorithm
that has rotation invariance and is suitable for a variety of
multi-modal images.

F. Running Time and Limitations

Table 7 reports the average running time of each compared
method on the whole 60 image pairs, which is calculated on
a laptop with an Intel i7-8550U @ 1.8GHz CPU, 8 GB of
RAM. SIFT and LSS are implemented in C++ while others
are implemented in Matlab. RIFT+ represents RIFT without
rotation invariance. RIFT∗ deals with the rotation invariance
stage based on parallel computing.

As can be seen, the running time of RIFT is about 2 times
of SAR-SIFT and 5 times of PIIFD. The computational com-
plexity is one of the limitations of RIFT. Comparison RIFT
with RIFT+, we find that the rotation invariance stage has the
highest complexity in RIFT. Fortunately, if the rotation prior
is known, the rotation invariance stage can be easily disabled
by setting a flag parameter in RIFT. In addition, the rotation
invariance stage is very suitable for parallel computing and can
be easily implemented. As shown, RIFT∗ only costs a third
of the running time of RIFT. If we rewrite RIFT∗ by C++,
the running speed can be increased by an order of magnitude.

RIFT does not build a scale space for feature detection and
description. Thus, it is sensitive to large scale and viewpoint
variations. To cope with this issue, we can first build a
Gaussian scale space that is similar to SIFT; then, apply a
well-designed feature detector such as the uniform competency
detector [31] on the maximum moment map and use an
adaptive binning histogram technique [34] on the MIM to
achieve robustness to geometric variations. As mentioned
earlier, this paper only focuses on NRD problem in feature
matching. We will implement these strategies in a common
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Fig. 15. The ME and RMSE of the proposed RIFT.

feature matching framework to achieve the robustness to both
geometric and radiation variations.

V. CONCLUSION

In this paper, we proposed a radiation-variation insensitive
feature matching method called RIFT. This method has rota-
tion invariance and is suitable for a variety of multi-modal
images. We first introduced the concept of PC. The initial
motivation of RIFT is derived from the fact that PC has
good radiation robustness. After analysing and summarising
the drawbacks of the current methods, we described the details
of RIFT. In feature detection, we obtained both corner features
and edge features based on a PC map, taking into account
the number of features and repetition rate. We proposed
a MIM instead of gradient for feature description, which
has very good robustness to NRD. We also analysed the
inherent influence of rotations on the values of MIM and
achieved rotation-invariant by the constructing multiple MIMs.
In the experiment, we performed qualitative and quantitative
comparisons to verify the reliability and superiority of RIFT.
We also analysed the limitations of RIFT.
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