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Robust Geometric Model Estimation
Based on Scaled Welsch q-Norm

Jiayuan Li , Qingwu Hu , and Mingyao Ai

Abstract— Robust estimation, which aims to recover the
geometric transformation from outlier contaminated observa-
tions, is essential for many remote sensing and photogrammetry
applications. This article presents a novel robust geometric model
estimation method based on scaled Welsch q-norm (lq-norm,
0 < q < 1). The proposed algorithm integrates a scaled Welsch
weight function into the q-norm framework. It, thus, inherits
all the advantages of the standard q-norm, i.e., fast and robust.
The parameter sensitivity of the standard q-norm is also largely
alleviated by integrating such a weight function. These make the
proposed algorithm much superior to RANSAC-type methods
in real-life applications. We formulate the new cost function as
an augmented Lagrangian function (ALF) and divide the ALF
into two subproblems [a q-norm penalized least-squares (lqLS)
problem and a weighted least-squares (WLS) problem] by using
alternating direction method of multipliers (ADMM) method. For
the WLS problem, we introduce a coarse-to-fine strategy into the
iterative reweighted least-squares (IRLS) method. We change the
weight function by decreasing its scale parameter. This strategy
can largely avoid that the solver gets stuck in local minimums.
We adapt the proposed cost into classical remote sensing tasks
and develop new robust feature matching (RFM), robust exterior
orientation (REO), and robust absolute orientation (RAO) algo-
rithms. Both synthetic and real experiments demonstrate that the
proposed method significantly outperforms the other compared
state-of-the-art methods. Our method is still robust even if the
outlier rate is up to 90%.

Index Terms— Image orientation, model fitting, outlier
removal, point cloud registration, robust feature match-
ing (RFM).

I. INTRODUCTION

ROBUST estimation is a technique for simultaneous geo-
metric model fitting and outlier detection. Due to the

inevitable existence of outliers in real observations, robust
estimation has a variety of applications in remote sensing and
photogrammetry. For example, robust feature matching (RFM)
is a prerequisite for image registration [1]–[3], image mosaick-
ing [4]–[6], image fusion [7], [8], and bundle adjustment [9];
robust exterior orientation (REO) is a prerequisite for digital
orthophoto map generation [10] and 3-D reconstruction [11].
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In remote sensing, there are two types of widely used robust
estimation methods, i.e., robust estimators and maximum
consensus [12].

Robust estimators, such as M-estimators, S-estimators, and
MM-estimators, are popular in statistics, whose goal is to give
large weights to inliers while small weights to outliers. Thus,
the effect of outliers toward the cost function can be largely
discounted. Generally, robust estimators are optimized via
the iteratively reweighted least-squares (IRLS) [13] algorithm
(or called the iteration method with variable weights in
the adjustment of measurement), which alternates between
weights assignment and weighted least-squares (WLS) opti-
mization until convergence. Robust estimators are efficient and
the estimated solutions are optimal. However, they can only
deal with cases with no more than 50% of outliers [14], [15].

The maximum consensus is a technique whose goal is
to seek a model that maximizes the size of the inlier set.
RANSAC [16] is a typical maximum consensus method.
RANSAC-type methods can handle more than 50% of out-
liers. Owing to this property, they are the most popular
robust regression methods in computer vision and also in
remote sensing. However, RANSAC gives no guarantee of
optimality [12]. Because RANSAC and its variants are ran-
domized methods, they cannot absolutely guarantee that the
obtained results are satisfactory approximations, let alone
optimal estimates. Even if all possible subsets are tried,
the optimal solution may not be found because the optimal
solution corresponds to all observations rather than subsets
[12], [17].

In this article, we propose a new robust geometric model
estimation method based on the scaled Welsch q-norm (lq -
norm, 0 < q < 1). The proposed cost can be regarded as an
extension of standard q-norm estimation [18], [19], i.e., we
integrate a scaled Welsch function into the q-norm framework
to construct a new cost function. It, thus, inherits all the
advantages of the standard q-norm estimation. The parameter
sensitivity of q-norm estimation is also largely alleviated by
integrating a weight function. These make the proposed esti-
mate far superior to RANSAC-type methods in real-life appli-
cations. We use augmented Lagrangian function (ALF) [20]
and alternating direction method of multipliers (ADMM) [21]
to optimize this nonconvex and nonsmooth object func-
tion. The ADMM divides the cost into two subproblems,
i.e., a q-norm penalized least-squares (lqLS) problem and a
WLS problem. For the WLS problem, we introduce a coarse-
to-fine strategy into the IRLS method. We change the weight
function by decreasing its scale parameter instead of fixing it.
This strategy can largely avoid that the solver gets stuck in
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local minimums. We also give applications to geometric
processing in remote sensing. We develop new RFM, REO,
and robust absolute orientation (RAO) algorithms. Extensive
experiments demonstrate the power of the proposed method,
i.e., it is still robust even if the outlier rate is up to 90%.

II. RELATED WORK

This section reviews recently proposed robust regression
techniques (both robust estimators and maximum consensus
methods) in remote sensing or computer vision instead of
statistics, since the proposed method is designed for remote
sensing, photogrammetry, or computer vision.

A. Robust Estimators

As known, the breakdown point of all robust estimators is no
better than 0.5. Typical robust estimators cannot handle cases
with more than 50% of outliers, such as M-type estimators
and cross correntropy.

1) M-Type Estimators [15], [22]: M-estimators can be
regarded as generalized maximum-likelihood estimators. Typi-
cally, their costs are positive-definite and symmetric functions,
such as Huber cost, Welsch cost, and Tukey cost. General-
ized M-estimators (GM-estimators) incorporate an appropriate
loss weight to bound the influence function of M-estimators.
S-estimators are based on a scale estimate. MM-estimators
combine the high breakdown of S-estimators and the high
efficiency of M-estimators. M-type estimators had been widely
used in remote sensing and image processing tasks, such as
pixel completion [23] and image denoising [24].

2) Cross Correntropy [25]–[28]: Liu et al. [25] proposed
a novel localized similarity measure called cross correntropy.
Compared with the mean-square error (MSE) measure, corren-
tropy dictates the value of the similarity measure by the kernel
function while MSE dictates the value by all the samples.
Thus, the cost function that maximizes the cross correntropy
has no assumption of Gaussian noise and is more robust to out-
liers than the cost of MSE (l2-norm cost). Essentially, the max-
imum correntropy criterion (MCC) can also be regarded as an
M-estimate. If we set ρ(v) = ((1 − exp( − v2/2σ 2)))/

√
2πσ ,

where ρ(·) is the cost of M-estimate and v is a residual, the
M-estimate cost becomes an MCC cost. MCC has been applied
in many computer vision and signal processing problems.
For example, He et al. [27], [28] introduced the MCC into
pattern recognition and principal component analysis [29];
Chen et al. [30] applied the MCC to adaptive filtering;
Wang and Pan [31] proposed a K -means clustering algorithm
based on the MCC measure.

Several recently developed estimators that assume outliers
are uniformly distributed can tolerate more than half of
the data being outliers, such as generalized projection-based
M-estimator (GpbM-estimator), L2E estimator, and q-norm
estimator.

3) GpbM-Estimator [32]: It is an extension of projection-
based M-estimator [33], which reformulates M-estimate as a
projection-based optimization problem. There are three major
steps in GpbM-estimator: it first computes a scale estimate
based on the hypothesize-and-verify technique; then, performs

a model estimation step and refines the model via local
Grassmann Manifolds optimization; finally, an inlier/outlier
dichotomy strategy is adapted to distinguish outliers from
inliers. The hypothesize and manifolds optimization stages
largely decrease its efficiency.

4) L2E Estimator: Ma et al. [34] proposed a robust esti-
mator called L2E estimation to deal with noise and outliers,
the cost function of which is to minimize the l2 distance
between densities. The L2E estimation is then applied to
nonrigid feature matching to show its effectiveness.

5) Q-Norm Estimation [18], [19]: As pointed out in the
literature [35]–[37], q-norm (0 < q < 1) overcomes some
shortcomings of l1-norm. It is less biased and much sparser
than l1-norm. Therefore, q-norm performs better than l1-norm
in many tasks. For example, Marjanovic and Solo [36] used
q-norm for matrix completion. Xie et al. [38] developed an
image denoising algorithm based on q-norm. Xu et al. [37]
proposed an iterative half thresholding algorithm based on
l1/2 regularization for sparse modeling. They demonstrate that
the l1/2 regularization is superior to l1 regularization. However,
these works did not use the q-norm as a robust cost. In our
previous work [18], we introduced the q-norm for robust
estimation, which is solved by the ADMM method. Superior
to M-estimators and cross correntropy, it can tolerate up
to 80% of outliers. The major limitation is the sensitivity to
parameters. Different parameters may lead to very different
results. For different data sets, the parameters must be carefully
tuned, which makes the method is not competitive against
RANSAC-type methods. The proposed scaled Welsch q-norm
is an extension of q-norm estimation.

B. Maximum Consensus

Maximum consensus methods contain widely used
RANSAC-type methods and other exact methods. RANSAC
uses a hypothesize-and-verify technique for model fitting,
which alternates between randomly minimal subset selection
and estimated model verification. The model with the largest
inlier set is returned as the solution after a mass of trials.
RANSAC has dozens of variants [39]–[43]. For example,
Torr and Zisserman [39] proposed a probability-based
RANSAC variant called MLESAC, which maximizes the
likelihood instead of the number of inliers. Chum et al. [40]
presented a locally optimized RANSAC (LO-RANSAC).
LO-RANSAC improves the sampling stage of the original
RANSAC by a local optimization step, which significantly
decreases the number of sampling trails. Raguram et al. [41]
proposed a universal framework for RANSAC-type methods
named USAC, which incorporates a number of important
practical and computational tricks. Brachmann et al. [42]
tried to introduce deep learning technique into RANSAC.
They proposed a learning-based method called differentiable
sample consensus (DSAC). DSAC learns good hypotheses
in an end-to-end fashion by a probabilistic selection, where
the expected loss with regard to all learnable parameters
can be derived. El-Melegy [44] proposed a RANSAC
variant that integrates the M-estimate into the traditional
RANSAC framework. However, as mentioned earlier,
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Fig. 1. Cost function curves, the black curve, blue curve, green curve, and
red curve, represent the costs of the least-squares estimation (l2-norm), the
l1-norm estimation, the q-norm estimation (q = 0.5), and the proposed scaled
Welsch q-norm estimation (q = 0.5), respectively.

RANSAC-type methods suffer from a major drawback,
i.e., no guarantee of the optimality.

RANSAC-type methods only estimate approximate solu-
tions for a geometric model. Differently, the goal of the
exact methods is to find the globally optimal solution. Exact
algorithms are usually theoretically justified, which means
that optimality guarantees, convergence, and bounds can be
provided [12]. The maximum consensus is an intractable
problem because of its combinatorial nature. Hence, different
search methods should be conducted to find a global solution.
The most popular brute force search method is branch-and-
bound (BnB) [45], [46]. However, the theoretical compu-
tational complexity of these exhaustive search methods is
huge, i.e., exponential runtime, which prevents their usages
in real applications. More recently, some efforts are made to
conduct the search efficiently. For instance, Chin et al. [47]
proposed a guaranteed outlier removal technique based on
mixed-integer linear programming (MILP). Specifically, they
used MILP to remove observations that are probably true
outliers before global optimization. Therefore, the search space
of exact methods can be largely reduced. In another work [48],
they transformed the maximum consensus as a tree search
problem. They developed a method based on A* search [49]
under the framework of LP-type methods [50]. Although many
efforts are made, these exact methods are still much slower
than approximate methods like RANSAC.

III. METHODOLOGY

A. Motivation

Least-squares regression is widely adopted in remote sens-
ing and photogrammetry, such as exterior orientation, trian-
gulation, and bundle adjustment, because of its efficiency and
simplicity. However, it relies on an assumption of Gaussian
noise, which is violated by outliers. From Fig. 1, the cost of
least squares (the black curve) has no bound and increases
quadratically. It is not a robust estimate.

Maximum consensus is a typical technique for robust regres-
sion, which finds the model f that maximizes the number of

inlier observations [12], [51]

arg max
δ

|I |
s. t. ‖ f (xi , δ) − yi‖2 ≤ ξ ∀i ∈ I (1)

where (xi , yi ) is a multidimensional observation, δ denotes
the parameter set of model f , H = {1, 2, . . . , n} is an index
set of the input observations, ξ is an inlier threshold, and
‖·‖2 is the l2-norm. The subset I ⊆ H is an inlier set or
called consensus set and |I | represents its size. Essentially,
this objective is equivalent to minimize the number of outlier
observations, which can be formulated as

arg min
δ

‖ O‖0

s. t. ‖ f (xi , δ) − yi‖2 ≤ ξ + oi

oi ≥ 0, i = 1, 2, . . . , n (2)

where O = [o1, o2, . . . , on]T is a nonnegative slack variable
vector and ‖·‖0 is the l0-norm. ‖O‖0 is the number of
nonzero elements in vector O. However, this formulation
does not make the problem any easier. Optimization of this
l0-norm cost is still very difficult due to the high nonconvexity.
A popular choice is to replace the l0-norm with l1-norm, since
l1-norm is the closest convex relaxation of l0-norm. Then, this
problem can be drastically simplified

arg min
δ

‖ O‖1

s. t. ‖ f (xi , δ) − yi‖2 ≤ ξ + oi

oi ≥ 0, i = 1, 2, . . . , n (3)

where ‖·‖1 is the l1-norm and ‖O‖1 = |o1|+ |o2|+ · · ·+ |on|.
The l1-norm cost has been widely used in robust geometric
model estimation, such as triangulation [52], structure from
motion [53], [54], and feature matching [55], which is more
robust than l2-norm. It gives equal emphasis to all data
while least squares, by squaring the residuals, assign larger
weights to outliers. Hence, the cost curve of l1-norm (the blue
curve) only increases linearly. However, l1-norm still does not
largely reduce the influence of outliers. As pointed out in the
literature [12], l1-norm minimization technique should be used
only on problems with low outlier rates.

To bridge the gap between the l0-norm and l1-norm,
q-norm gains a significant interest in image denoising [38],
matrix completion [36], [56], and sparse reconstruc-
tion [35], [57]. It overcomes some shortcomings of l1-norm.
For instance, q-norm is less biased and much sparser than
l1-norm. Xu et al. [37] demonstrated that l1/2 regularization
is superior to l1 regularization. Motivated by these, we intro-
duced the q-norm for robust estimation in our previous work
[18]. Different from the l1 minimization which is based on a
maximum consensus framework [see (3)], we use the q-norm
cost to construct a robust estimator. From Fig. 1, the cost
of q-norm (The green curve, take q = 0.5 as an example.
Note that the other values between 0 and 1 such as q = 0.3,
q = 0.4, and q = 0.7 can also be used.) is much more gradual
than l2-norm and l1-norm. It can largely discount the effect of
outliers and has a high degree of robustness. As demonstrated
in [18] and [19], the q-norm estimate can tolerate up to 80%
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of outliers. However, this cost is unbounded and q-norm
estimate is sensitive to parameters. To deal with this prob-
lem, we integrate a scaled Welsch weight function into the
q-norm framework. Then, the new cost becomes a bounded
redescending function. From the curve (the red curve), we can
learn that outliers with large residuals do not contribute to
the total cost. It almost completely discounts the influence of
outliers. Thus, the proposed scaled Welsch q-norm cost has a
higher degree of robustness than the standard q-norm estimate.

B. Scaled Welsch Q-Norm Cost

For better illustration of the proposed cost and its optimiza-
tion framework, we take the RFM problem as an example.
Given a set of outlier contaminated matches C = {(xi , yi )}n

i=1
(observations) that is extracted from a remote sensing image
pair, where xi and yi are 2-D image coordinates (in pixels).
The goal of RFM is to remove false matches inside C ,
i.e., distinguish inliers from outliers. The geometric relation-
ship between (xi , yi ) can be modeled by function f . For RFM
problem, function f is an affine transformation. If (xi , yi ) is
an inlier, we have

yi = f (xi , δ) = Axi + t (4)

where δ = (A, t) denotes the parameter set of function f . A is
a 2 × 2 affine matrix and t is a 2 × 1 translation column vector.
Generally, this problem can be solved by the least-squares
regression

arg min
A,t

n∑
i=1

‖ Axi + t − yi ‖2
2. (5)

As mentioned above, least squares is sensitive to outliers. The
estimated parameters will be skewed to adjust large residuals.

We propose a new robust method which can directly recover
the accurate parameter set δ from {xi}n

1 and { yi }n
1. The new

cost function is

arg min
δ

n∑
i=1

‖ wi [ f (xi , δ) − yi ] ‖q
q

= arg min
A,t

n∑
i=1

‖ wi (Axi + t − yi ) ‖q
q (6)

where 0 < q < 1. wi is a weight for match (xi , yi ). Ideally,
it gives a large weight (close to 1) to an inlier while a small one
(close to 0) to an outlier. We use the scaled Welsch function

wi = e−(υi/u)2
(7)

where u is a scale factor and υi is a residual.
This cost function is nonsmooth and nonconvex. We use

ALF and ADMM to solve this problem. First, auxiliary
variables M = {mi }n

1 are introduced into (6)

arg min
A,t

n∑
i=1

‖ mi ‖q
q

s.t. εi= wi (Axi + t − yi )−mi = 0. (8)

This constrained function can be rewritten as an unconstrained
one via the Lagrangian function and solved by the dual

ascent method. However, the dual ascent method may fail
if the cost function is not strictly convex [21]. ALF has no
assumptions of convexity and is adopted

Lρ(A, t, W, M)

=
n∑

i=1

(
‖ mi ‖q

q + λT
i εi + ρ

2
‖ εi ‖2

2

)

=
n∑

i=1

(
‖ mi ‖q

q + ρ

2
‖ λi

ρ
+ εi ‖2

2 − 1

2ρ
‖ λi ‖2

2

)
(9)

where {λi }n
1 are dual variables and ρ > 0 is a penalty

coefficient.
The optimization of (9) is an intractable problem since

it is nonconvex. Fortunately, in the ALF, there are two sets
of variables, i.e., parameter set δ = (A, t) and weight set
W = {wi }n

1, and auxiliary variables M. Thus, the optimization
process can be performed efficiently by alternating
between (δ, W ) estimation and M estimation via ADMM.
ADMM has both superior convergence and decomposability
properties. It decomposes (9) into two main parts

R FM par t1 : arg min
M

Lρ

= arg min
M

n∑
i=1

(
‖ mi ‖q

q + ρ

2
‖ βi−mi ‖2

2

)
(10)

R FM par t2 : arg min
A,t ,W

Lρ

= arg min
A,t ,W

n∑
i=1

ρ

2
‖ wi (Axi + t − γi ) ‖2

2 (11)

{βi }n
1 and {γi }n

1 are used for notation compactness⎧⎪⎪⎨
⎪⎪⎩

βi = λi

ρ
+ wk−1

i (Ak−1 xi + tk−1 − yi )

γi = yi + mk−1
i

wk−1
i

− λi

ρwk−1
i

.
(12)

For part1, (A, t, W ) is fixed and M is the variable. The
equation is separable and can be efficiently solved via
coordinate-wise optimal minimization methods [36]. (See
Appendix VI for the derivation of (10∼11) and the details
of part1 optimization.)

For part2, M is fixed and (A, t, W ) is the variable.
Equation (11) is a weighted sum of l2-norm cost which is
generally solved by IRLS. Different from the classic IRLS
which fixes the weight function, we change the weight func-
tion through the scale parameter u in each iteration. See
in Fig. 2, large values of u make the width of the cost curve
larger. So, more observations are allowed to take part in the
optimization stage. In contrast, the width of the cost curve
becomes narrower as u decreases, which makes the parameter
estimation more precise. For example, when u= 36, matches
with residuals smaller than 80 pixels all contribute to the cost
of (11). However, when u = 6, matches with vi > 10 almost
have no impact on the cost. In our optimization stage, we first
give a very large value to u (u = D, where D is the largest
distance between two matches in {xi }n

1). During the iteration
process, we decrease the value of u until the optimization is
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Fig. 2. Illustration of the proposed coarse-to-fine IRLS strategy. Larger
values of scale u have smoother weight function curves, so more observations
are allowed to take part in the optimization stage. As the scale u decreases,
the weight function becomes sharper and the estimation is more accurate.

converged or u reaches 3ξ , where ξ is a threshold for the
identification of inlier matches. For RFM, the affine model
is linear, which can be solved without the initial guess.
Benefit from this coarse-to-fine strategy, the effect of local
minimums can be largely alleviated. Algorithm 1 summarizes
the optimization process of part1 and part2.

Algorithm 1 RFM via Scaled Welsch q-Norm

Input: initial match set: C = {(xi , yi )}n
i=1

Output: affine parameters δ = (A, t) and inlier set I
1 Initialize q , ρ, {λi }n

1 = 0, {wi }n
1 = 1, and u = D;

2 while δ unconverges do
3 (1) part1 optimization:
4 Compute {βi }n

1 according to Eq. (12);
5 Optimize mi via shrinkage algorithm;
6 (2) part2 optimization:
7 Compute {γi }n

1 according to Eq. (12);
8 while W unconverges or u > 3ξ do
9 Optimize δ = (A, t) via WLS;

10 Update u = u/η, η > 1 is a step-size;
11 Update {wi }n

1 based on Eq. (7);

12 Update dual variable set {λi }n
1, λi = λi + ρεi ;

13 Apply affine model f on C to find inlier set I .

IV. APPLICATIONS

The proposed cost is general. It is suitable for not only RFM
but also other geometric model estimation problems, such
as exterior orientation [also called Perspective-n-Point (PnP)]
and absolute orientation. Exterior orientation and absolute
orientation play a very important role in remote sensing,
which are the foundations of bundle adjustment, coordinate
transform, point cloud registration, and so on. In the above,
we take RFM as an example; in this section, we apply the
proposed cost to exterior orientation and absolute orientation,
developing new REO and RAO algorithms.

A. Robust Exterior Orientation (REO)

Suppose we are given n 3-D–2-D contaminated corre-
spondences {( Qi , pi )}n

1, where { Qi }n
1 are coordinates of

noncollinear 3-D points in an object reference system and
{ pi }n

1 are 2-D image projections. Our goal is to recover
the pose of the image. Assume that the camera internal
parameters K are known. Then, the camera projection model
which maps 3-D object points into 2-D image points is as
follows [58]:

di

[
pi

1

]
= K[R, T]

[
Qi

1

]
(13)

where R and T are rotation matrix and translation vec-
tor, respectively. di is the depth of image point pi . After
eliminating di , the geometric model f of camera exterior
orientation problem is

pi = f ( Qi , δ) = P1:2[ Qi 1 ]T

P3[ Qi 1 ]T (14)

where P = K[R, T] is a 3×4 camera matrix; P j ( j = 1, 2, 3)
represents the j th row of P; and δ = (R, T).

The scaled Welsch q-norm cost of REO is

arg min
δ

n∑
i=1

‖ wi [ f ( Qi , δ) − pi ] ‖q
q

= arg min
R,T

n∑
i=1

∣∣∣∣
∣∣∣∣wi

(
P1:2[ Qi 1 ]T

P3[ Qi 1 ]T − pi

) ∣∣∣∣
∣∣∣∣
q

q
. (15)

Similarly, ADMM also obtains two main subproblems
(see Appendix B for details). In part2, the unit quaternions
are used to format the rotation matrix and the Gauss–Newton
algorithm is adapted to optimize the nonlinear least squares
(line 9 of Algorithm 1). The Gauss–Newton method first
linearizes the nonlinear function via Taylor series expansion
and solves the cost iteratively. Hence, the initial values of
parameters δ = (R, T) are required to guarantee convergence.

B. Robust Absolute Orientation (RAO)

Recovering the geometric relationship between two different
Cartesian coordinate systems from n given 3-D–3-D corre-
spondences {(Xi , Yi )}n

1 is known as the absolute orientation
problem in photogrammetry and remote sensing. It is usually
applied in registering a freenet adjustment result to a geodetic
coordinate system and point cloud registration. Mathemat-
ically, this problem is defined by a seven-parameter rigid
transformation

Yi = f (Xi , δ) = sRXi + T (16)

where R and T are rotation matrix and translation vector,
respectively; s is a scale factor; and δ = (s, R, T ). The
correspondences {(Xi , Yi )}n

1 contain outliers.
The scaled Welsch q-norm cost of RAO is

arg min
δ

n∑
i=1

‖ wi [ f (Xi , δ) − Yi ] ‖q
q

= arg min
s,R,T

n∑
i=1

‖ wi (sRXi + T − Yi ) ‖q
q . (17)

The details about the ADMM subproblems can be found in
Appendix C. The orthonormal matrix [59] method is used to
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TABLE I

DETAILED SETTINGS OF THE COMPARED ALGORITHMS IN SIMULATIONS

solve the seven-parameter rigid transformation, which provides
a close-form solution and does not require parameter initial
values.

V. EXPERIMENTS AND EVALUATIONS

In this section, parameter sensitivity analysis is first carried
out. Then, both simulated and real experiments are performed
to qualitatively and quantitatively evaluate the proposed
scaled Welsch q-norm cost. For a comprehensive assessment,
both the proposed RFM and REO algorithms are evaluated
(RAO is not included since it is similar to the RFM).

A. Simulation Experimental Evaluations

This section compares the proposed method with several
robust estimators and RANSAC-type methods through sim-
ulation experiments, including Welsch M-estimator, Tukey
S-estimator, GpbM-estimator [32], q-norm estimation [18],
RANSAC [16], LO-RANSAC [40], and FLO-RANSAC [60].
The experimental details of these methods are summarized
in Table I, including parameter settings and implementations.
All the experiments are performed on a laptop with an Intel
Core i7-8550U at 1.8-GHz CPU, 8-Gb RAM. Five indicators
are adapted to quantitatively evaluate the results, including
root-mean-square error (RMSE), precision, recall, F-score, and
success rate. Precision describes the correct proportion of the
detected inliers under the groundtruth transformation, i.e., the
proportion of observations with residuals less than ξ . Recall
is the ratio of the detected inlier number and the groundtruth
inlier number. F-score combines the two indicators of precision
and recall. The calculation formulas of F-score and RMSE are
as follows: ⎧⎪⎪⎨

⎪⎪⎩
F−score = 2Pr ∗ Re

Pr + Re

RMSE =
√

1

n

n∑
1

v2
i

(18)

where Pr and Re denote precision and recall, respectively.
To alleviate the randomness of simulation experiments,
1000 independent tests (one group) are repeated for each
experiment under the same configurations. Thus, success rate
is the ratio of successful estimation times in 1000 tests. If the
RMSE of a test is less than ξ , the estimation is successful.
We use the average result of one group test for evalua-
tion. Namely, subsequently reported RMSE, precision, recall,
F-score, and success rate accuracies are all the average values
of 1000 independent tests.

1) Parameter Sensitivity Analysis: Parameter sensitivity
analysis is performed by simulating image feature matching
process. First, 100 2-D feature points {xi}100

1 are randomly
generated. The horizontal and vertical coordinates of {xi}100

1
are distributed within the interval of [−500, 500] pixels. Then,
a groundtruth global affine transformation Tgt is randomly
generated

Tgt

=
⎡
⎣ 1 tan κ tx

tan ϕ 1 + tan ϕ tan κ ty

0 0 1

⎤
⎦
⎡
⎣ sx cos θ sx sin θ 0

−sy sin θ sy cos θ 0
0 0 1

⎤
⎦

(19)

where t = [tx ty]T is a translation; ϕ and κ are shear
angles; θ is a rotation angle; sx and sy are anisotropic scales.
Specifically, we randomly generate a rotation angle within
[−π/2, π/2], two shear angles ϕ and κ within [−π/6, π/6],
and anisotropic scales within [0.5, 1.5]. We use an average
value of {xi}100

1 as the translation t . The groundtruth corre-
spondences { ytrue

i }100
1 of {xi}100

1 can be obtained by

ytrue
i = Axi + t (20)

where A = Tgt
(1:2,1:2) is a 2×2 submatrix of Tgt in the top left.

To make the simulation realistic, random noise within
[−2, 2] pixels are added to { ytrue

i }100
1 , obtaining { ȳi }100

1 .
We then randomly select 50 feature points from { ȳi }100

1 to add
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TABLE II

DETAILS OF PARAMETER SETTINGS

TABLE III

PARAMETER q STUDY

TABLE IV

PARAMETER α STUDY

TABLE V

PARAMETER ρ STUDY

errors and obtain the final observed correspondences { yi }100
1 .

The errors are distributed in [−500, 500] pixels, i.e., the entire
image region. The 50 matches with errors are outliers and the
outlier rate is 50%.

Next, we use {xi ,yi }100
1 as the input and perform an

RFM algorithm to estimate an affine transformation Te. The
residual of each feature correspondence is calculated based on
the transformation Te. Feature matches whose residuals are
larger than ξ = 3 pixels are removed as outliers, obtaining
the filtered feature matches I = {(xi , yi )}K

i=1, where K is the
number of remaining matches.

There are three main parameters in both standard q-norm
estimation and the proposed scaled Welsch q-norm cost: q , α,
and ρ. The parameter q controls the shape of the cost function
of q-norm, the value of which ranges from 0 to 1. Parameter ρ
is a penalty coefficient. ρ is not a fixed value, which varies
with the number of iterations. Thus, ρ herein represents the
initial penalty. α is an iteration step size. After an iteration,
we have ρk+1 = αρk . Based on the above simulation process,
three independent experiments are designed to study these
parameters, where each experiment has only one parameter as
a variable, and others are constant. The experimental details

can be found in Table II. The results of both methods are
reported in Tables III–V.

From the results of the standard q-norm estimation, we can
learn the following:

1) Larger values of q result in worse performance. How-
ever, if q is too small, this method will be sensitive to
noise.

2) The standard q-norm estimation totally fails when the
values of α are small, such as α= 0.85, α= 1.05, and
α= 1.25. Too large values of α also seriously influence
the performance, i.e., larger values of α result in lower
accuracies, such as α= 2.25 and α= 2.45.

3) The initial penalty coefficient ρ has a relatively small
impact on the performance.

In general, the standard q-norm estimation has very strong
dependence on parameters. Different parameters may lead to
completely different results, which greatly affects its practica-
bility. In contrast, the results show that the proposed scaled
Welsch q-norm cost is not sensitive to parameters. Different
parameters have little effect on the proposed method. Only
too small α values and too large ρ values will decrease the
performance. Obviously, the proposed cost has much better
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Fig. 3. RFM results of the eight compared methods on simulated data, including (a) precision, (b) recall, (c) F-score, (d) RMSE, (e) success rate, and
(f) running time.

practicability than the original q-norm estimation. We fix
q = 0.2, α = 1.45, and ρ = 3 × 10−6 for the following
experiments.

2) RFM Simulation: The simulation process is similar to
the one in the parameter sensitivity analysis section. The only
difference is that the parameter sensitivity section sets the
outlier rate to 50% and fixes it, while this section treats the
outlier rate (denoted by rout) as a variable. We fix the number
of inlier feature matches to 50, and sequentially increase the
outlier rate rout from 10% to 90%. For each value of the outlier
rate rout, we generate n = 50/(1 − rout) feature matches.
Then, we randomly select n − 50 feature matches to add
errors.

Fig. 3(a)–(c) reflects the precision, recall, and F-score accu-
racies of each compared method, respectively. As can be seen,
when the outlier rate is less than 50%, Welsch M-estimator
and Tukey S-estimator work very well. Their performances
are comparable with the proposed scaled Welsch q-norm cost.
Unfortunately, once the outlier rate is higher than 50%, these
methods are completely ineffective. Therefore, their curves
in Fig. 3 show a “cliff-like drop.” GpbM-estimator performs
better than these two traditional robust estimators, whose
performance decreases after the outlier rate reaches 70%.
RANSAC-type methods have very high precision accura-
cies and better resistance to outlier rates. However, their
recall and F-score accuracies are usually not as high as the
q-norm estimation. The standard q-norm estimation and the
proposed scaled Welsch q-norm cost achieve the second best
and the best performances in terms of F-score, respectively.
The proposed method is more robust than the standard q-norm
estimation. When the outlier rate is within 80%, the accuracy
of the scaled Welsch q-norm cost is consistent with the stan-
dard q-norm estimation. Once the outlier rate exceeds 80%,
the proposed method is obviously better than the standard
q-norm estimation. Our cost is still robust even if the outlier

rate is up to 90%. Fig. 3(d) plots the RMSE results. Note
that if a test fails, we assign its RMSE to two times the
noise level (the noise level is two pixels in this experiment).
As shown, the RMSEs of RANSAC, LO-RANSAC, and
FLO-RANSAC are the largest, because RANSAC-type meth-
ods have no guarantee of the optimality of the estimated solu-
tions and are sensitive to noise. Welsch M-estimator, Tukey
S-estimator, and GpbM-estimator get similar RMSEs with the
proposed scaled Welsch q-norm cost if the outlier rate is less
than 50%. Our RMSE is better than the one of the standard
q-norm estimation, which means that our model estima-
tion accuracy is higher than the original q-norm estimation.
Fig. 3(e) reports the success rate. Again, the proposed method
ranks the best, whose success rate is still almost 100%
under 90% of outliers. In terms of running time, Welsch
M-estimator is the fastest while GpbM-estimator is the slow-
est. Standard q-norm estimation is comparable to the proposed
method. RANSAC-type methods become much slower as the
outlier rate increases. When the outlier rate is 90%, our method
is 15+ times faster than RANSAC-type methods.

3) REO Simulation: We evaluate the proposed REO algo-
rithm by simulating the process of camera perspective projec-
tion. Specifically, suppose that we are given a well-calibrated
pinhole camera with a 1500-pixels focal length, a zero prin-
cipal point offset, and a 2000 × 2000 pixels image size.
We first randomly generate n 3-D image space points { Qc

i }n
1

inside a square box of [−8, 8] × [−8, 8] × [8, 16]. We use
the mean of { Qc

i }n
1 as a translation vector T , and randomly

generate a 3 × 1 rotation angle vector to construct a 3 × 3
Rodrigues rotation matrix R3×3. The translation vector and
rotation matrix (R3×3, T) are regarded as the groundtruth
camera exterior parameters. Based on these parameters, we can
obtain the corresponding object space points { Qi }n

1 of { Qc
i }n

1

Qi = R−1
3×3

(
Qc

i − T
)
. (21)
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Fig. 4. REO results of the eight compared methods on the simulated data, including (a) precision, (b) recall, (c) F-score, (d) RMSE, (e) success rate, and
(f) running time.

Projecting { Qi }n
1 to the image, obtaining the corresponding

groundtruth image points { ptrue
i }n

1

di

[
ptrue

i
1

]
= K Qc

i . (22)

Similarly, we add random noise within [−2, 2] pixels
to { ptrue

i }n
1, obtaining { p̄i }n

1. We then randomly select rout × n
points according to the outlier rate rout to add errors and get
the final observed image points { pi }n

1. The set {( Qi , pi )}n
1 is

the 3-D–2-D correspondences contaminated by outliers. In our
experiments, we fix the number of inliers to 50 and increase
the outlier rate from 10% to 90%.

As mentioned above, the camera projection model is esti-
mated based on the Gauss–Newton method, which requires
initial guesses for parameters. In our experiments, the initial
angle vector is obtained by randomly adding a 3 × 1 rotation
angle vector between [−10◦, 10◦] to the groundtruth angle
vector. The initial translation vector is randomly generated
between [70% × T , 130% × T ]. The comparison results are
shown in Fig. 4.

From Fig. 4, we can obviously see that there is a break-
point in the Welsch M-estimator and Tukey S-estimator.
They usually fail when the outlier rate is higher than 50%.
GpbM-estimator is able to handle cases with less than 70%
of outliers. However, it failed completely if the outlier rate
reaches 90%. RANSAC-type methods perform much better
than typical robust estimators. Their precision accuracies are
still close to 100% when the outlier rate is up to 90%.
However, their recall accuracies are worse than the proposed
method. The performance of the standard q-norm estimation is
not as good as in the RFM task. This may be expected. We use
the parameters studied in the RFM task for REO evaluation.
As mentioned earlier, the standard q-norm estimation is very
sensitive to parameters. Thus, the parameters learned from
RFM are not the best choice for REO. In contrast, the proposed

scaled Welsch q-norm cost achieves the best results. The pre-
cision, recall, and F-score are close to 100% even if the outlier
ratio is 90%. The proposed method overcomes the drawback
of the standard q-norm estimation. Fig. 4(d) reflects the RMSE
accuracy of each method. Again, the RMSE accuracy of the
proposed method is the smallest. It is almost unaffected by
outlier rates. RANSAC-type methods have the lowest RMSE
accuracies. They use three-correspondence subsets to solve
the solutions, where not all observation data are involved in
the optimization stage. Thus, RANSAC-type methods are very
sensitive to noise, which make the estimated parameters are
not optimal. In this task, we use an iterative Gauss–Newton
method to solve the exterior orientation model. Hence, meth-
ods with a hypothesize stage become much slower, such as
RANSAC-type methods. When the outlier rate is 90%, our
method is 20+ times faster than RANSAC-type methods and
25+ times faster than GpbM-estimator.

B. Real Experiments

1) RFM Real Experiment: Apart from RANSAC-type meth-
ods, many state-of-the-art RFM methods have been pre-
sented recently, such as locally linear transforming (LLT)
[34], iterative biconvex optimization (IBCO) [61], locality
preserving matching (LPM) [62], guided locality preserv-
ing matching (GLPM) [63], q-norm estimation [18], locality
affine-invariant matching (LAM) [17], and learning for mis-
match removal (LMR) [64]. We select LLT, FLO-RANSAC,
IBCO, and q-norm estimation for comparison. M-estimators
and S-estimators are not included in this section since they
completely fail if the outlier rate is higher than 50%. The
parameters of each method are fine-tuned to obtain the best
performance and are consistent in all experiments. The imple-
mentation code of each method is obtained from the author’s
personal website.
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Fig. 5. Qualitative comparisons. First row: result of the third image pair. Second row: results of the last one. Blue lines: correct detected inliers. Yellow
lines: false detected inliers. (a) LLT. (b) FLO-RANSAC. (c) IBCO. (d) q-norm estimation. (e) Weighted q-norm estimation.

Fig. 6. More qualitative results of the proposed RFM method. Blue lines: correct detected inliers. Yellow lines: false detected inliers.

We select 11 false-color aerial image pairs from the Erdas
sample data1 that were captured over IL, USA. The image
sizes of these data are distributed from 1391 × 1374 pixels
to 1459 × 1380 pixels. The ground sampling distance is
about 0.2 m and the overlapping regions are extremely small.
Groundtruth geometric transformations are established for
quantitative evaluation. Specifically, we manually select five
uniformly distributed matches with sub-pixel accuracy for
each image pair and estimate an accurate affine transforma-
tion by linear least squares as the approximate groundtruth
transformation. We use the scale invariant feature transform
(SIFT) [65] method (note that the other feature matching
method can also be applied such as speeded up robust fea-
tures (SURF) [66] and radiation-variation insensitive feature
transform (RIFT) [67]) with an nearest neighbor distance ratio
(NNDR) of 0.9 to produce initial matches. Then, we apply the
established groundtruth transformation to the initial matches
and treat the matches with less than three-pixel residual errors
as groundtruth inliers. We use the precision and recall metrics
as the quantitative evaluation indicators.

Fig. 5 gives the qualitative comparison results on the third
and last aerial image pairs. The horizontal overlapping region
of the third image pair is less than 5% of the image width.
The vertical overlapping region of the last image pair is less
than 5% of the image height. Such small overlapping regions
result in high proportions of outliers, which pose a huge chal-
lenge to image matching problem. As shown, LLT and stan-
dard q-norm estimation failed completely on the third image

1http://download.intergraph.com/downloads/erdas-imagine-2013-2014-
example-data

TABLE VI

INITIAL PARAMETER VALUES

pair and no correspondences are extracted. FLO-RANSAC is
obviously superior to the above methods. It achieves good
precision accuracy but very poor recall accuracy. IBCO gets
similar results to FLO-RANSAC, since it takes the results
of FLO-RANSAC as its initial solutions and refines these
solutions. In addition, even if the matching of LLT is success-
ful, many false matches are still preserved in the last image
pair. Only the proposed scaled Welsch q-norm cost achieves
good performance on both the image pairs. There are almost
no outliers in the results, which means that the precision
accuracies are 100%. In addition, the proposed method extracts
many more reliable matches than FLO-RANSAC and IBCO.
More qualitative results of the proposed RFM method can be
found in Fig. 6.

Fig. 7 reports the quantitative comparison results, where
the left figure plots the inlier rate cumulative distribution of
the initial matches. As shown, the average outlier rate of
this data set is 91.99%. These images are very challenging
due to such high outlier rates. The right figure summarizes
the matching results, where the dots represent the (precision,
recall) pairs. It can be seen that only FLO-RANSAC, IBCO,
and the proposed method get high precision performance; and
only our proposed method gets high recall performance on
all image pairs. The average (precision, recall) pairs of LLT,
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TABLE VII

REO RESULTS ON TWO LARGE-SCALE REAL IMAGES

Fig. 7. Quantitative comparison results. (Left) Inlier rate cumulative
distribution of the initial matches. (Right) Matching results, where the dots
represent the (precision, recall) pairs.

Fig. 8. Test images for real experiment. Red circles: control points.
(The right-hand side image is rotated for better visualization.). (a) Central
image. (b) Oblique image.

FLO-RANSAC, IBCO, q-norm estimation, and the proposed
method are (54.5%, 58.16%), (95.93%, 72.45%), (96.91%,
78.70%), (80.90%, 81.82%), and (98.42%, 99.26%), respec-
tively. The proposed method achieves (1.50%, 20.56%) growth
rates compared with IBCO.

2) REO Real Experiment: Two large-scale aerial images are
used for real experimental evaluation, which are obtained by Si
Wei digital camera (SWDC) camera system over the Pingding-
shan, Henan, China. The SWDC camera system contains four
oblique cameras and a central camera. As shown in Fig. 8,
the left-hand side image is acquired by the central camera

with a focal length of 12102.1 pixels. Its image size is 5406
× 7160 pixels. The right one with an image size of 7160 ×
5406 pixels is acquired by an oblique camera with a focal
length of 14671.5 pixels. We measure 12 and 15 3-D ground
control points by using the GPS-RTK technique for Fig. 8(a)
and (b), respectively. We manually find the corresponding 2-D
image points of these 3-D control points, obtaining the 3-
D–2-D correspondences. The location precision of these 2-D
image points is better than 0.3 pixels.

We use GPS-RTK to obtain 2-D–3-D correspondences,
which are exact and do not contain outliers. Thus, we compare
our method with several camera exterior orientation meth-
ods (both robust methods and nonrobust methods), including
LHM [68], EPnP+GN [69], RPnP [70], DLS [71], OPnP [72],
REPPnP [73], and lq PnP [19] (the standard q-norm estima-
tion). All the implementation codes except for lqPnP are
provided by Ferrazs PnP MATLAB toolbox. The default
parameters of each method are used.

The proposed algorithm is an iterative optimization algo-
rithm, which requires initial parameter guesses. The initial
external orientation parameters (include three angle parameters
[ϕ,ω, κ] and three location parameters [Xs, Y s, Zs]) are given
in Table VI. The results are summarized in Table VII.

From the results, we can see that only four of the total nine
methods, i.e., EPnP+GN, PATB, standard q-norm estimation,
and the proposed method, are able to correctly recover the
camera orientation parameters. The other five methods all
get the wrong solutions, whose coordinates in the elevation
direction are negative. The reasons may be two-fold: first, our
cases are large-scale (approximately 450 m × 450 m × 30 m),
while most of the compared PnP methods only evaluated on
very small-scale cases in their articles. Second, 3-D points
in our cases can be approximately regarded as locating on a
plane (near-planar case). Hence, closed-form methods may not
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be as reliable as the iterative methods such as EPnP+GN and
our method. Among these four successful methods, the pro-
posed method achieves the best reprojection accuracy. The
RMSEs are only 0.82 and 0.87 pixels, which are even better
than the commercial software PATB. Moreover, it can be
found that when the observations do not suffer from outliers,
the proposed algorithm has low dependence on the initial
parameter values. For instance, the true orientation parameters
of the right image are [17.964, −44.673, −117.563, 657.875,
162.093, 647.846]. However, the given initial values are only
[0, 0, −30, 0, 0, 500].

To verify the robustness of the proposed method on the
real data, 30 randomly generated outliers are added to the
3-D–2-D correspondences. The outlier rates are 71.4% and
66.7% for the left-hand side and the right-hand side test
images, respectively. The average RMSEs of the proposed
method are 1.22 and 1.25 pixels on 100 independent tests,
respectively.

VI. CONCLUSION

This article proposes a novel robust cost function for
geometric model estimation and outlier removal, which is
called scaled Welsch q-norm (0 < q < 1). We integrate
a scaled Welsch weight function into a q-norm framework
to improve the robustness to outlier rates. We adopt ALF
to reformulate the new cost function and use ADMM to
decompose the ALF into two subproblems, namely, an lqLS
problem and a WLS estimation problem. We introduce a
coarse-to-fine strategy into the IRLS method, i.e., we change
the weight function by decreasing its scale parameter along
iterations. This strategy can largely avoid that the solver gets
stuck in local minimums. We also introduce the proposed cost
into typical remote sensing applications and develop three
algorithms, including RFM, REO, and RAO. These three
algorithms are very important for geometric processing in
remote sensing. Note that the proposed cost is also suitable
for other geometric model estimation tasks. Based on the
exhaustive experimental evaluations, we can make some con-
clusions. First, the proposed cost is robust with respect to gross
errors and can tolerate high outlier rates, which overcomes
the limitation of the classical robust estimators. Second, our
method is less sensitive to parameters compared with the
standard q-norm estimation, which makes it more flexible in
real-life applications.

The limitations of the proposed method are twofold.
1) The proposed method cannot absolutely guarantee that

the globally optimal solution can be achieved. Although
we use a coarse-to-fine optimization strategy in IRLS,
the proposed method still cannot absolutely avoid get-
ting stuck in local minimums, especially good ini-
tial guesses for parameters are required (such as the
REO problem).

2) The proposed cost cannot handle cases with extremely
high outlier rates such as 95%. In addition, although
the proposed method is less sensitive to parameters
compared with the standard q-norm cost, the parameters
cannot be set arbitrarily.

APPENDIX A
ADMM DECOMPOSITION AND PROBLEM

par t1 OPTIMIZATION

ADMM decomposes (9) into two main parts

R FM par t1 : arg min
M

Lρ

= arg min
M

n∑
i=1

(
‖ mi ‖q

q +ρ
2 ‖ λi

ρ

+wk−1
i (Ak−1 xi + tk−1 − yi )−mi ‖2

2

)

= arg min
M

n∑
i=1

(
‖ mi ‖q

q +ρ

2
‖ βi−mi ‖2

2

)
(A.1)

R FM par t2 : arg min
A,t ,W

Lρ

= arg min
A,t ,W

n∑
i=1

(
‖ mk−1

i ‖q
q +ρ

2 ‖ λi
ρ

+wi (Axi + t − yi )−mk−1
i ‖2

2

)

= arg min
A,t ,W

n∑
i=1

ρ

2

∣∣∣∣
∣∣∣∣wi

[
Axi + t −

(
yi+ mk−1

i

wi
− λi

ρwi

)]∣∣∣∣
∣∣∣∣
2

2

→ arg min
A,t ,W

n∑
i=1

ρ

2

∣∣∣∣
∣∣∣∣wi

[
Axi + t−

(
yi + mk−1

i

wk−1
i

− λi

ρwk−1
i

)]∣∣∣∣
∣∣∣∣
2

2

= arg min
A,t ,W

n∑
i=1

ρ

2

∣∣∣∣
∣∣∣∣wi (Axi + t − γi )

∣∣∣∣
∣∣∣∣
2

2
(A.2)

where the superscript k is an iteration counter. Note that wk−1
i

is a known value while wi is an unknown to be estimated.
In par t2, wi = e−(‖Axi+t−γi‖/u)2

.
For part1, (A, t, W ) is fixed and M is the variable. Each

element in mi can be optimized independently by adapting
a shrinkage algorithm, i.e., performing the minimization on
the separated (10) along the j th ( j = 1, 2) coordinate.
Consequently, part1 is simplified to the scalar version

arg min
m

(
|m|q + ρ

2
(β − m)2

)
. (A.3)

Then, the optimal solution m̂ is given by [56]

m̂ =
{

0, if|β| ≤ τ

sgn(β)φ, f |β| > τ
(A.4)

where τ = � + (q/ρ)� q−1 s.t . � = [2/ρ(1 − q)]1/(2−q);
sgn(·) is the signum function; φ ∈ (�, |β|) is computed from
the following iteration with initial guess φ0 = (� + |β|)/2:

φk+1 = |β| − q

ρ
(φk)q−1. (A.5)

The shrinkage operator acts as a classifier which automatically
classifies the residual vector into a possible inlier set and an
outlier set.

APPENDIX B
SUBPROBLEMS OF REO VIA ADMM DECOMPOSITION

With the ADMM decomposition, the REO problem can be
simplified into two main subproblems. Then, (10)–(12) are
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detailed as follows:
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APPENDIX C
SUBPROBLEMS OF RAO VIA ADMM DECOMPOSITION

With the ADMM decomposition, the RAO problem can also
be simplified into two main subproblems. Then, (10)–(12) are
detailed as follows:
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