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Abstract— Deep learning has achieved great success in recent
years, among which the convolutional neural network (CNN)
method is outstanding in image segmentation and image recog-
nition. It is also widely used in satellite imagery road extrac-
tion and, generally, can obtain accurate and extraction results.
However, at present, the extraction of roads based on CNN
still requires a lot of manual preparation work, and a large
number of samples can be marked to achieve extraction, which
has to take long drawing cycle and high production cost. In this
article, a new CNN sample set production method is proposed,
which uses the GPS trajectories of floating car as training set
(GPSTasST), for the multilevel urban roads extraction from high-
resolution remote sensing imagery. This method rasterizes the
GPS trajectories of floating car into a raster map and uses the
processed raster map to label the satellite image to obtain a
road extraction sample set. CNN can extract roads from remote
sensing imagery by learning the training set. The results show
that the method achieves a harmonic mean of precision and recall
higher than road extraction method from single data source
while eliminating the manual labeling work, which shows the
effectiveness of this work.

Index Terms— Convolution neural network (CNN), GPS
trajectories of floating car, high-resolution satellite imagery, road
extraction.

I. INTRODUCTION

DEEP learning is one of the important techniques to
classify terrains and extract objects from remote sens-

ing imageries[1]–[3]. As a geographical element closely
related to people’s life, road is characterized by complex and
changeable. Based on deep learning technology, especially
the convolutional neural network (CNN) model, the urban
road extraction from remote sensing imagery has been a
research focus, which is useful, effective, and efficient. For
example, Kahraman et al. [4] proposed a road detection
model based on neural network from remote sensing imagery,
mainly using a multilayer sensor to identify road based on
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the RGB eigenvalues of the image; Xia et al. [5] divided
road into different categories, then used pixel-level estimation
for remote sensing imagery by deep convolutional network,
predicted all probabilities of different categories, and finally
connected missing or nonsmooth roads; Saito et al. [6] take
the original pixel values in the spatial image as input and
output of the predicted three-channel label image (building-
road-background), which can effectively train a single CNN
model, extract multiple objects at the same time, and improve
the performance of prediction. Combining the advantages of
residual operation and U-Net, Zhang et al. [7] proposed a
semantic segmentation road extraction neural network, which
is constructed using the units and has a similar architecture
to U-Net, which make the model use fewer parameters but
achieve better performance.

In road extraction, a road extraction network model is
constructed based on a CNN, and road objects in the image are
segmented and extracted. The commonly used CNN networks
for road extraction include LinkNet, D-LinkNet, D-LinkNet-
1D, and so on. The LinkNet [8] architecture is similar to a
ladder network architecture in which the feature map from
the encoder is added to the up-sampled feature map from
the decoder. Each encoder is coupled to a decoder such that
the input of the encoder is coupled to the output of the
corresponding decoder. ResNet18 is used as the backbone
of the network structure, which reduces the parameters of
the network and simplifies the structure. The D-LinkNet [9]
model uses LinkNet and a pretraining encoder as its backbone
and adds an additional expansion convolution to the center.
The basic structure of D-LinkNet is mainly composed of
three parts: encoder, center part, and decoder. D-LinkNet
uses ResNet34 as an encoder. The D-LinkNet center part
uses several expansion convolutions and jump connections to
expand the receptive field while preserving the resolution and
spatial information of the image. The D-LinkNet decoder is
identical to the original LinkNet, which guarantees training
speed. D-LinkNet-1D is a network model specifically used for
road extraction. Roads are thin and long, and the 1-D filters
are more aligned with road shapes. D-LinkNet-1D replaces the
3 × 3 transposed convolution in decoder of D-LinkNet with
1-D transposed convolution.

In the process of road extraction, the neural network model
should be trained first by the training set composed of the
remote sensing imageries that have been marked out of roads,
and the model is fitted. After the training is completed,
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the trained model can be used to extract the road from the
remote sensing imagery. There are many open source road
extraction sample sets in the field of deep learning. However,
influenced by climate, topography, economic, and culture,
roads in different regions vary widely. Especially in some
cities, roads are divided into many grades, and high-grade
roads are generally wide and easy to be identified unless
large areas are blocked. While some low-grade roads, such
as roads inside the community, tend to very narrow, some
are blocked by vehicles, trees, and buildings, which make
them difficult to be identified. Existing data sets do not
satisfy road extraction in all regions. If the characteristics
of the roads in training set and in the area to be predicted
have a big difference, the large generalization error will be
produced and the prediction result will be affected [10].
Therefore, it is necessary to manually generate the sample
set for road extraction, which is more reliable, and the
obtained extraction result has high precision, but the initial
investment is large, and the practicality is low in actual
production [11]. From the current road extraction research,
it is difficult that the extraction accuracy and efficiency reach
a good balance. We need to explore an easy-to-access and
reliable production method of road extraction sample set,
which will make the road extraction based on the CNN model
from imagery to ensure the accuracy and integrity, while the
preparation time is shortened and the overall efficiency is
improved.

High-resolution remote sensing imagery can reflect sur-
face features in more detail, making remote sensing imagery
data into one of the main data sources for road extraction.
Gruen and Li [12] combined wavelet decomposition with
road sharpening and proposed a model-driven linear feature
extraction algorithm based on dynamic programming, which
can successfully extract a complete road network from a
single SPOT satellite imagery or an aerial imagery; Cheng-
Li et al. [13] used Gaussian probability iterative segmentation
to process the road area to extract road information, and then
used Hough transform to detect the straight edge of the road.
The test proved that good branch road information can be
obtained. The IHS transform is used by Yan and Zhao for
true color fused images for threshold segmentation, then the
connected regions are processed, and the spurs are removed
to obtain the road network [14]. Liu et al. [15] used improved
directional consistency to segment the high-resolution imagery
to obtain the road vectorgraph. The ground cover information
of remote sensing imagery is comprehensive, abundant, and
accurate. However, the objects in remote sensing imagery are
redundant, and the objects on the road and along the road
will interfere with the extraction. Many roads are blocked by
trees or buildings or are in the shadows, which is difficult to
identify them. Road extraction from remote sensing imagery
has the problem of different objects have the same spectrum
and the same objects have different spectrum in remote
sensing imagery, and it is difficult to reflect the topologi-
cal relationship and geometric structure of the road in the
image.

Floating cars such as express and special cars pro-
vided by platforms and taxis are equipped with GPS

positioning equipment. Most civilian private cars are also
equipped with GPS equipment for navigation. These floating
cars generate massive GPS trajectories during driving, and
these floating car data the included spatial location information
can directly reflect the geometry of the road traffic network,
which is a good data source for extracting road information.
Based on the characteristics of GPS trajectories of floating car,
the method of extracting road from floating car data is real time
and available. A lot of research results have been obtained by
extracting road geometry information from floating car data.
Chen and Cheng [16] used image processing technology to
convert the GPS trajectories points into a binary image, and
use the morphological method to extract the road skeleton
line to construct the road network map. The nuclear density
function was used by Biagioni and Eriksson [17], multiscale
raster maps are obtained by setting different thresholds, and
finally the skeleton extraction algorithm was used to obtain the
road centerline. Liu et al. [18] combined the kernel density
estimation method with the K -Means clustering method to
extract road network data. Xie et al. [19] proposed a method
to infer road networks from GPS trajectories of floating car.
They detected potential intersections by clustering the turning
points on the GPS trajectories of floating car and inferred
the geometry of the road segments between intersections by
aligning GPS tracks point by point using a “stretch and
then compress” strategy. Qiu and Wang [20] proposed a
point segmentation and grouping method to generate road
maps from GPS trajectories of floating car. Guo et al. [21],
Wu et al. [22], and Wang et al. [23] used clustering, machine
learning, probability statistics, and other methods to study the
geometry extraction of road intersections.

Compared with satellite imagery, the continuity of the GPS
trajectories of floating car and good geometric features can
help solve the problem of remote sensing imagery and can
reflect the road topological relationship lacking in remote
sensing imagery. To put it in another way, the ground cover
information of remote sensing imagery is more comprehen-
sive, abundant, and accurate. It can compensate for the prob-
lem of extracting from floating car data to a certain extent,
including the uneven GPS trajectories distribution, reflecting
incomplete information and poor GPS positioning accuracy.
The use of remote sensing imagery combined with floating
car data for road network extraction can fully exploit their
respective advantages and more comprehensively and accu-
rately extract road information under complex scenes. This
article will combine the floating car data and high-resolution
remote sensing imagery in the city to study the fusion method
that can give full play to their respective advantages. Use deep
neural network learning methods, which is difficult to obtain
sample data during network training. The method of quickly
labeling and obtaining sample data based on floating car data
is proposed, and network training is carried out to realize
accurate, complete, and effective urban road extraction.

In this article, we proposed a method for automatically
generating urban road extraction sample sets using floating car
data. The floating car data containing only road information
will be used instead of the prior knowledge of artificial road
extraction, which has high efficiency and small investment.
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Fig. 1. Technical route of road extraction.

It can realize the rapid extraction and update of roads and
the extraction of large-scale and complex scenes. With the
prior knowledge of the urban road extraction, the results are
comprehensive and accurate, thus achieving a good balance
between efficiency and effect.

II. METHODOLOGY

At the beginning of the extraction, the filtered floating
car data are rasterized. Considering the problem of uneven
distribution of GPS trajectories of different grades of roads,
the GPS trajectories of floating car are rasterized according to
the points density. The GPS trajectories of the points dense
road area are directly rasterized, and the GPS trajectories of
the sparse area are rasterized according to the order according
to the timing. The two raster maps are combined to get a
raster image of all the GPS trajectories. Then, a series of
mathematical morphology processing is performed to obtain a
smooth GPS trajectories raster map. Then, the resolution of the
GPS trajectories raster map and the remote sensing imagery is
unified, and the corresponding road is marked by the floating
car data to generate a training sample set. Using a CNN as a
basic structure to establish an urban road extraction network
model, and learning training data including floating car data
marked. The network model of road extraction is obtained,
and the roads in the high-resolution remote sensing imagery
of the test set are extracted. The road extraction result is finally
obtained.

The overall technical route of road extraction by CNN based
on floating car data from the high-resolution imagery is shown
in Fig. 1.

A. Road Extraction From GPS Trajectories of Floating Car

Floating car data are one of the important data sources
for urban road extraction. It is a direct representation of the
road shape. Due to the huge number of GPS trajectories of
floating car, the method of extracting roads from GPS trajec-
tories vectorgraph has huge computation and storage space,
which is difficult to achieve in actual production. The image
morphology method is used to extract the urban road network
information from the GPS trajectories of floating car, which
greatly reduces the time complexity and space complexity,
and can meet the needs of actual production. This article

will elaborate on the method and process of extracting roads
from trajectories. Firstly, the expression form of the trajectory
data and the conditions of data cleaning will be described.
Then, the method of GPS trajectories rasterization will be
discussed. An algorithm of floating car data rasterization
based on GPS trajectories density is proposed. A smooth GPS
trajectories raster image of research region is obtained based
on mathematical morphology.

1) GPS Trajectories Rasterization: The GPS trajectories
of floating car data are the GPS information continuously
collected and recorded by a large number of floating car over a
period of time. It has the characteristics which are large data
volume and uneven data quality. The floating car data used
in this article are the floating car data of the Wuhan express
car provided by the Drip Express. Each piece of data contains
order information, longitude, latitude, speed, direction, time
stamp, and horizontal accuracy factor information. Due to the
interference of the accuracy of the GPS trajectories of floating
car and the occlusion of the road segment, the accuracy of the
GPS trajectory data is different. The trajectory data with high
precision and good quality are screened for the next step.

In this article, the speed, acquisition interval, and horizontal
component precision factor are used as the screening condi-
tions for the floating car data. If the speed of a floating carat a
certain position is very slow or even 0, its GPS data will drift
around it. Such GPS trajectories points will seriously affect the
positioning accuracy and need to be removed. At the same
time, the trajectory speed is limited to the range of [5 m/s,
25 m/s] according to the general driving speed of floating
car on the urban road. The acquisition interval of the floating
car data is mostly less than or equal to 5 s. To improve the
accuracy of the data, the floating car data with an acquisition
interval greater than 5 s are removed. The floating car data also
contain the horizontal component precision factor information,
which is used to indicate the error of the trajectory in the
latitude and longitude direction. It is generally considered that
the horizontal precision factor is greater than 7 is the error,
and less than or equal to 3 is the data with high positioning
accuracy [24]. In this article, the amount of floating car data
is large. In order to obtain higher precision extraction results,
the GPS trajectories with horizontal precision factor less than
or equal to 3 are selected. The floating car data satisfying the
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Fig. 2. Raster map with different resolution.

above three conditions are taken as the data to be processed,
and the remaining data are all removed.

Rasterizing floating car data is the mapping of GPS
trajectories-points into a 2-D space. The image obtained by
rasterizing the point directly is a binary image, the grid
pixel value of trace points is 1, and the grid pixel value of
without trace point is 0. Therefore, the floating car data can be
rasterized by calculating the latitude and longitude coordinates
(lonp, latp) of the trace point corresponding to the spatial
coordinates (x , y) of the grid. The calculation method is

x = round((lonp − lonmin) × numpix) (1)

y = numy − round((lat p − latmin) × numpix) (2)

where round is a rounding function. lonmin and latmin are the
minimum latitude and longitude of the research area. numpix

is the number of pixels per degree. This variable is directly
determined by the resolution, which is the ratio of the distance
to the resolution per degree. numy is the number of pixels in
the y-direction of the research region. Since the origin of the
screen coordinates is the upper left corner of the screen, the
coordinate value in the y-direction needs to be subtracted from
numy . The calculation of numy is

numy = round
(
(latmax − latmin)×numpix

)
(3)

where latmax is the maximum longitude of the research area?
The resolution of the raster image is also one of the factors

that determine the road extraction result: if the resolution is
too high, the pixel rasterization points of the traces will be too
scattered. Although the geometric features of the road can be
more clearly and accurately reflected, the sparse trace points
are removed more easily as noise when they are denoised.
At the same time, the amount of high-resolution raster data
will be too large, which will affect the efficiency of post
processing. If the resolution is too low, the proportion of
pixels occupied by the track will increase, which will result
in inaccurate road information presented by the raster image.
For example, two adjacent roads may be misjudged as one.
Therefore, choosing the suitable resolution is one of the keys
to rasterize floating car data.

Fig. 2 shows an image generated by rasterizing the trajectory
with different resolutions. Figure 2(a) is a GPS trajectories
rasterization image with 2 m resolution. Although the effect
of reflecting the geometric features of the road is good,
some GPS trajectories of road segments are too sparse, and
GPS trajectories in the entire road may be removed during
denoising. Fig. 2(c) is an image with 1 m resolution. In this
image, the two roads on the left side are rasterized to one.

Fig. 3. Results with different rasterization methods. (a) Result of GPS
trajectories points rasterization. (b) Result of rasterizing traces using linear
interpolation. (c) Result of rasterizing the floating car data according to the
traces density.

And it cannot reflect the geometric characteristics of the
roundabout. Fig. 2(b) uses the 4 m resolution, it reflects the
geometry of the road better. This article uses the 4 m resolution
to rasterize the GPS trajectories.

To put it in another way, the method of rasterizing GPS
trajectories points is also a problem to be discussed. For
the GPS trajectories of floating car with higher acquisition
frequency, the method of rasterizing GPS trajectories points
generally has two kinds of algorithms: direct rasterization and
linear interpolation. Direct rasterizing means that only the
pixels of GPS trajectories points are assigned a value of 1,
while the linear interpolation algorithm is to connect two GPS
trajectories points with a straight line, and the pixels through
which the line passes are also assigned a value of 1. It can
be seen that for Fig. 3(a), there may be only a few discrete
GPS trajectories points in the sparse road segment, which can
be easily removed as salt–pepper noise during late denoising,
resulting in loss of road information; (b) interpolation of the
GPS trajectories by linear interpolation in the section with
dense points will result in data redundancy and, at the same
time, increase edge burrs and aggravate noise.

Therefore, we rasterize the floating car data according to
the GPS trajectories density. The result is shown in Fig. 3(c).
First, we split road into sparse and dense road segments
based on floating car data for one week. Then, according to
the density of the road trace points, the GPS trajectories of
floating car are processed separately by different algorithms.
The linear interpolation method is adopted in the road with
sparse GPS trajectories. On the road with heavy traffic, only
the trace points are rasterized, avoiding redundant operations
and ensuring good shape of the roads.

2) GPS Trajectories Raster Map Mathematical Morphol-
ogy: Although we have used reasonable conditions to clean the
floating car data and rasterize it with appropriate algorithm.
Due to hardware and other conditions, the rasterized image
will still have noise, holes, edge burrs, and so on. Adopting the
mathematical morphology algorithm, designing a reasonable
process to de-noise and smooth the rasterized image, can
obtain images with better road geometry.

After obtaining the rasterized image of the GPS trajectories
of floating car, first select the appropriate template according
to the actual situation and use the median filtering to denoise.
The salt–pepper noise on the image due to GPS trajectories
drift can be eliminated by median filtering. The algorithm can
effectively remove discrete noise points and can maintain the
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Fig. 4. Mathematical morphology processing results of GPS trajectories
raster map. (a) Result of rasterization. (b) Result of denoising. (c) Result of
removing holes. (d) Result of deburring.

original shape of the image well. Fig. 4(a) is an image after
rasterization, and Fig. 4(b) is the result of denoising by median
filtering. The noise points have been removed substantially.

The denoised image still has some holes and gaps that need
to be processed. Using the appropriate structural elements for
the dilation operation eliminates the hole gap in the target
object. Then, restore the edge to the original shape by erosion
operation with the same structural element, that is, the closing
operation. The algorithm which dilates firstly and then erodes
the target object can effectively eliminate the holes in the raster
map. Fig. 4(c) shows the result of removing the holes after the
closing operation.

In opening operation, the first erosion operation eliminates
edge protrusions smaller than the structural elements and
results in smooth images; the subsequent dilation operation can
expand the nonburred part back to the original shape, achieving
the effect of both eliminating the burr and maintaining the
original shape of the target object. Process the raster map
by opening operation to remove burrs on the edge while
ensuring the original geometry of the road. In Fig. 4(d), after
processing with the opening operation, the smoothed result is
obtained.

B. Establishment of a Road Extraction Sample Set

At present, deep learning technology is developing rapidly
and becomes more mature, but the sample data production in
deep learning are often carried out by means of manual label-
ing, which consumes a lot of time and energy. The floating car
data are a direct reflection of the road network. This article
chooses to use the floating car data to automatically label the
training data to quickly create a deep learning sample set.

This article designs a reasonable experimental process to
make a road extraction sample set. Since the resolution of
the satellite imagery selected in this article is higher than the
resolution of the GPS trajectories raster map, this article will
first improve the resolution of the GPS trajectories raster map
to the resolution of the satellite imagery. In addition, since
the high-resolution image takes up a large space, which is
difficult to further processing on the image, the two images are
first divided according to the size required by the final sample
set, which facilitates image processing operations and avoids
memory leaks. Then, this article proposes an appropriate
algorithm to adjust the width of the floating car data so that
it can match the road on the remote sensing imagery well.
Finally, the test set and training set data will be distributed in
a reasonable proportion to complete the production of the road
extraction sample set. The specific process of road extraction
sample set production is shown in Fig. 5.

1) Composition of the Sample Set: In this article,
the smooth GPS trajectories raster map is used to label
the roads in the satellite imagery. The sample set for
general deep learning consists of a training set and a
test set. The Google Earth satellite imagery of research
region with a resolution of 0.54 m is used. The training
data set is composed of remote sensing imageries with
1024 × 1024 size and road binary images with the same size
corresponding to them. The road raster in the road binary map
takes 1 and the background value is 0. The remote sensing
imagery is divided into subimages with 1024 × 1024 size,
and the total number is 72 × 48. The pixel value at the edge
of the image, which size is less than 1024, is assigned a value
of zero.

The GPS trajectories of floating car coordinate system in
this article and the Google Earth satellite image coordinate
system use the same coordinate system, and no coordinate
conversion operation is required. The image rasterized by
the GPS trajectories of floating car is superimposed with the
satellite imagery, and most of the GPS trajectories grid falls
into the road area of the image. The high-resolution imageries
are processed by geometric correction, radiation correction,
atmospheric correction, and so on.

2) Matching of GPS Trajectories to Roads on Imagery:
The resolution of the high-resolution imagery is about 0.54 m,
while the resolution of the GPS trajectories raster map is 4 m.
To use the floating car data to label the road on the remote
sensing imagery, firstly, the resolution of the images should
be unified. The resolution of the GPS trajectories raster map
is increased to match the high-resolution imagery. Then, the
satellite imagery and the GPS trajectories of floating car raster
image are, respectively, divided into 1024 × 1024 subimages
by the grid segmentation tool.

In theory, the GPS trajectories points of floating car should
fall into and cover the entire road area, so that the width
of the GPS trajectories of floating car raster is the width
of the corresponding road. In reality, the various scenes are
very complex, and this ideal situation is often difficult to
achieve. In the main roads, especially in the busy roads of the
city center, there are more vehicles, and the GPS trajectories
drift phenomenon is more common. This makes the GPS
trajectories drifting to the sides of the road no longer discrete
grid points but connected to the normal GPS trajectories. Many
connected raster areas are unable to be removed by denoising
operations. As shown in Fig. 6(a), the GPS trajectories grid
represented by the yellow area has covered the buildings and
other objects on both sides of the road. Such a training sample
that mistakes the ground objects on both sides of the road for
the road will cause the neural network model to extract the
wrong information during training. A large number of such
samples will affect the extraction results of the network model.

Conversely, in some roads with less traffic, there may be
only a small number of vehicles passing through the time range
of experimental data acquisition. The GPS trajectories cannot
cover the entire road surface. Even some GPS trajectories
widths are too little to reflect the true characteristics of the
corresponding roads. The width of a road label is required in
the network learning in order to extract features. The yellow
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Fig. 5. Sample set production route.

Fig. 6. (a) GPS trajectories raster is narrower than the road width. (b) GPS
trajectories raster overflows road range.

GPS trajectories grids in Fig. 6(b) occupy only a small part
of the road surface.

For the abovementioned case, the width of the trajectory
should be appropriately adjusted to reflect the actual road
width in the satellite imagery. The first thing to do is to
judge the area where the GPS trajectories raster is too wide
and too narrow. According to the actual situation of urban
road, the width of higher-grade roads is generally greater than
30 m. The lowest level road displayed on the general map
is the residential group level road, which is connecting the
residential communities in the community, and the road width
is generally not less than 5 m. Since the road center line
is finally extracted in this article, the width of the labeled
road area can be slightly smaller than the actual road width.
Therefore, this article assigns that the GPS trajectories grid
with a width greater than 30 m may have the problem of GPS
trajectories drift, and it is necessary to erode the appropriate
width inward. In this article, the erosion width is set to 5 m,
and if the width is less than 30 m after erosion, it will erode to
30 m. A 5- to 30-m wide GPS trajectories raster is considered
to be an appropriate GPS trajectories raster which is not need
to process, while a GPS trajectories raster less than 5 m wide
is considered to be too narrow and needs to be dilated to 5 m
width.

The resolution of the GPS trajectories raster map is already
the same as the resolution of the high-resolution satellite
imagery, which is about 0.54 m. When screening a GPS
trajectories grid with 5 m width, a circular-like structural
element with a diameter of 9 as shown by B in Fig. 7 is
selected. Use it to scan the GPS trajectories object in the GPS
trajectories raster image. The structural object proceeds along
the center line of the GPS trajectories object and determines
whether the structural element B is completely covered by

Fig. 7. Schematic of the expansion of a narrow track object.

the GPS trajectories object during the scanning process; if it
is, it proceeds to the next position of the center line without
processing and, if it is not, the pixel with value of 0 in
the structure element is assigned a value of 1, then continue
scanning until the end of the entire image is complete. The
schematic diagram is shown in Fig. 7. The structural element
B proceeds along the centerline of the GPS trajectories object
represented by the red line. The gray grids are the GPS
trajectories, and the grids filled with oblique line are the grid
of which value is changed from 0 to 1 by dilation.

Similarly, for roads with a GPS trajectories raster width
greater than the actual, a structural element B1 with 55 pixels
diameter is used to proceed along the center line of the
GPS trajectories object, and for a GPS trajectories raster with
a width larger than the structural element B1, a structural
element B2 with a side length of 30 m, that is, 9 × 9, is used
for erosion. Determine if the erosion will be less than B1, if it
is not, continue, if it is, then erode to the end of the B1 edge.
Through this algorithm, a track grid with good matching with
the road can be obtained. The width of road raster Wr is

Wr =

⎧⎪⎨
⎪⎩

DB , (0 < Wt < DB)

Wt ,
(

DB ≤ Wt ≤ DB1

)
Wt − DB2 ,

(
Wt > DB1

) (4)

where DB is the diameter of structural element B, Wt is the
width of GPS trajectories raster, and DB1 and DB2 are the
diameters of structural elements B1 and B2, respectively.
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Fig. 8. Example of training set. (a) One of the satellite imageries. (b) Label
data with the roads labeled based on the traces data.

Finally, a test set consisting of 600 satellite imageries and a
training set consisting of 2856 sets of satellite imageries and
label data with the roads labeled are obtained. Fig. 8 shows
a set of training set data. The use of GPS trajectories data to
label remote sensing imagery saves a lot of labors and time
costs and is convenient and effective.

III. EXPERIMENTAL RESULTS

A. Data Sets and Models

1) Data Sets: The floating car data used in this article
are the 19-day express floating car data from June 20,
2018 to July 8, 2018. The average daily data are about
85 million, and the total data size is 140 G. The research
area is the urban area of Wuhan, with a longitude range of
114.125◦–114.500◦, a latitude range of 30.417◦–30.667◦, and
an area of approximately 900 km2. The research region is
located in the Wuhan Fourth Ring Road and contains most of
the area within the Third Ring Road.

The Google Earth satellite imagery of research region with
a resolution of 0.54 m is used. The image size is 22G, and
the image acquisition time is of May 2018. There is little
difference between the acquisition time of the floating car data
and the satellite imagery. In order to classify the CNN model
for the high-resolution imagery, its size needs to satisfy the
receptive field of the model. At the same time, the connectivity
and complexity of the road should be ensured. Therefore, the
high-resolution imagery should be segmented and divided into
subimages of appropriate size.

In this article, a rectangular area with an area of about 150
km2 is selected as the research area. The area is located on the
lower reaches of the Han River, mainly crossing the Jianghan
District, Qiaokou District, and Hanyang District of Wuhan.
The specific location is the yellow area, as shown in Fig. 9.
The area includes some urban centers and suburbs of Wuhan.
The types of roads include highways, urban roads of various
grades, like main roads, internal roads, factories and mines
roads, and rural roads. They meet the complexity of urban
roads. It facilitates detection of the effect of the road extraction
results. There are 600 images in 30 × 20 in the test set, and
the remaining 2856 images are labeled to the training set data.

The DeepGlobe Road Extraction Data set [25] and Road
and Building Detection Data set (the Massachusetts Roads
Data set) [26] are used for training. The data set includes
6226 pieces of high-resolution remote sensing imageries with
label data, and the image size is 1024 × 1024 pixels. The
captured countries involve Thailand, India, and Indonesia,

Fig. 9. Areal map of research area.

including urban, rural, coastal, and tropical rainforests. The
main roads are labeled, but some side roads are ignored. The
size and format of each image is the same as the data set
based on GPS trajectories. The Massachusetts Roads Data set
consists of 1171 aerial images of the state of Massachusetts.
Each image is 1500 × 1500 pixels in size, covering an area
of 2.25 km2. Because the image size is different from the GPS
data set, we clip the image to a size of 1024 × 1024 pixels.
The data set covers a wide variety of urban, suburban, and
rural regions and covers an area of over 2600 km2. The label
data are a binary image in which the road area pixel value
corresponding to the high-resolution imagery is 1 and the
background value is 0. The information of the data sets used
in this article is shown in Table I.

2) Models: In order to validate the effectiveness of the train-
ing set labeled by GPS trajectories of floating car, LinkNet,
D-LinkNet, and D-LinkNet-1D are used for road extraction.
These models all have an encoder–decoder architecture. Mod-
els’ structure is light and has high precision and efficient.
They are image semantic segmentation neural networks which
are widely used for road extraction from remote sensing
imagery [27]–[30].

The LinkNet achieves a good balance between speed and
accuracy. The residual operation of the jump link between the
encoder and the decoder is introduced, so that the accuracy
of the model is improved, while the speed is improved, and
the most advanced precision level of image segmentation is
achieved. The expansion convolution can expand the receptive
field of the convolution kernel while keeping the number
of parameters unchanged, and it can ensure that the size of
the feature map of the output remains unchanged. There are
usually two forms of expansion convolution, cascaded and
parallel, both of which have the power to improve segmen-
tation accuracy. D-LinkNet adds an expansion convolution
to the center of LinkNet, which combines the advantages
of both forms, and using a shortcut connection to combine
the two forms. D-LinkNet-1D changes the shape of the
transposed convolution in the decoder based on D-LinkNet
to make it more suitable for road extraction. They are all
recent network models used for road extraction, with high
accuracy and fast training speed. We use DeepGlobe Road
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TABLE I

INFORMATION OF THE DATA SETS

TABLE II

IOU OF DIFFERENT TRAINING SET AND MODEL COMBINATIONS

Extraction Data set (DeepGlobe) and Road and Building
Detection Data set (RBDD) for training and testing to evaluate
the performance of the models, respectively; as shown in the
last column of Table II, from IoU, they have a good effect of
extracting roads.

B. Experimental Setup

Each CNN model is separately trained by four training sets
to obtain two road extraction models. First, the DeepGlobe
road extraction data set and Road and Building Detection
Data set are used for training. After the training is completed,
a satellite imagery road extraction model is obtained. Then,
based on this, the model trained by 2856 pieces of sample data
which are labeled by GPS trajectories raster, and the second
road extraction model is obtained. The label data are a binary
image in which the road area pixel value corresponding to the
high-resolution imagery is 1 and the background value is 0.

The test set data account for about 20% of all sample data,
which conform to the principle of data distribution for gen-
eral deep learning. Cross-validation was not used during the
training to prevent over-fitting, but data are increased through
data transformation and color transformation. Morphological
transformation methods for data increase include random
horizontal folding, vertical folding, diagonal folding, image
displacement, and image scaling. The color transformation is
that an image transforms in the HSV space. Because data
have increased, the validation set was not used. The CNN

Fig. 10. Experimental setup of road extraction.

models are trained by different training sets to extract roads
from satellite imagery.

LinkNet uses ResNet34 pretrained on the ImageNet[31]
data set as an encoder for road extraction. D-LinkNet adds
an expansion convolution of size 3 × 3 between the encoder
and the decoder based on LinkNet. D-LinkNet-1D changes the
transconvolution of the D-LinkNet decoder to a 1-D shape.
After the training is completed, the test set data are used
for testing, and the road extraction result of the test area is
obtained.

The models are, respectively, predicted the Wuhan test set,
and binary images with road information having the same
format as the label are obtained. Then, use the road raster
map refinement and vectorization method to generate the road
vectorgraph of the testing area. Experimental setup of road
extraction is shown in Fig. 10.

C. Result Analysis

To evaluate the performance of different models on the
Wuhan test set, we calculated the mean IoU, as shown in the
third column of Table II. In addition, we add an experiment
that the three neural networks trained from scratch on “the
DeepGlobe Road Extraction Data set” and “Road and Building
Detection Data sets,” which evaluate the performance of
networks and the quality of available labeled training data,
as shown in the last column of Table II. It can be seen that
the IoU using the open source data set training test is greater
than 0.6, indicating that the network performance and data set
quality are good. However, the IoU on the Wuhan test set of
the models without the Wuhan training set is all less than 0.5.
After adding the Wuhan training data, the performance has
increased significantly.
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TABLE III

ROAD EXTRACTION RESULTS EVALUATION

The label data used in this article are obtained by GPS
trajectories of floating car; it is not real road network data.
This article uses the real road vectorgraph as the truth data for
the evaluation of the results. The lowest urban road level in the
true value is the residential group level road, that is, the road
connecting the residential community in the community. The
road is a linear element and its length is usually used as
an index for evaluation. The extracted road results are in
linear format with some slight deviation between the data.
Therefore, this article refers to the linear element accuracy
measurement algorithm base on buffer proposed in refer-
ence[32]. And the precision, the recall rate, and the compre-
hensive evaluation index F value are selected as the evaluation
indexes.

The precision (P), the recall (R), and the F value (F) are
defined as

P = TP

TP + FP
(5)

R = TP

TP + FN
(6)

F =
(
α2 + 1

)
P × R

α2(P + R)
. (7)

Among them, TP is to predict the positive class as a positive
class, FP is to predict the negative class as a positive class,
and FN is to predict the positive class as a negative class. The
value of α in (3) is 1, which is also the most common F value

F =2 × P × R

P + R
. (8)

The extraction result obtained by direct vectorization of the
trajectory raster data, the extraction results with only learning
the available labeled training data, and the extraction result
with learning the available labeled training data and the GPS
trajectories labeled data set are set as the evaluation objects.
The buffer is established according to width in the field of
the true value. It is compared with the road vectorgraph to be
evaluated. The length of the true positive TP, false positive
FP, which is the length of the background that is mistaken

for the road, and false negative FN, which is the length of
the road that is mistaken for the FN and the length of the
road that is mistaken for the background is calculated. When
calculating the recall rate, for more detailed analysis and
evaluation, the true value data are also classified according
to the road type field. It is divided into main roads including
highway, first, second, and third grade road, and side roads
including internal roads, factories and mines roads, and rural
roads. Table III is an evaluation index of these road extraction
results.

The precisions of the road results extracted by the three
models with learning GPS trajectories raster labels are higher
than 90%, while the precision of results extracted by mod-
els without GPS trajectories as training data is significantly
reduced in precision, which is less than 90%. Without learning
the floating car data, the extraction result will have many
false positives. As the green arrows point to in Fig. 11(a),
the railways in the satellite imagery are identified as a road
mistakenly.

In terms of the recall of the road extraction results, the over-
all recall rates of the extractions with learning the GPS
trajectories label are the highest, while the road extraction
recall rates without the learning GPS trajectories label are
the lowest. For the recall rate of the all roads, the recall
of extraction base on the GPS trajectories of floating car is
highest, which has little difference from the results by CNN
models with learning floating car data. The extraction recall of
the side roads is low. Relatively, the recalls of extractions based
on CNN models with learning floating car data are higher than
the others, while the recall of result extracted directly by GPS
trajectories of floating car performs the worst. As far as the
recall of the main road extraction, vehicles are mainly driven
on the main road, so the integrity of extraction based on only
GPS trajectories is the highest. The CNN models are able to
extract most of the roads covered by buildings or trees after
learning to the labels obtained by floating car data. The roads
pointed by red arrows in Fig. 11(b)–(d) are in the shadow but
is still extracted.
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Fig. 11. Road extraction results using different methods and data sets (Take DeepGlobe as an example).

It can be seen from the comprehensive evaluation results that
the result of each model with learning floating car data is better
than those without learning. And the extractions obtained from
satellite imagery based on models with learning floating car
data are relatively good in all aspects and the comprehensive
evaluation index is higher than the result extracted by only
GPS trajectories.

IV. DISCUSSION

In this article, the advantages of floating car data and high-
resolution satellite imagery are fully utilized, and a reasonable
process is designed. The method of effectively combining the
two to extract urban roads is proposed, and the extraction
results are relatively good.

In terms of precision, the precision of road extraction results
from only floating car data is the highest. This is because the
floating car data do not contain other features, and interference
information is less than satellite imagery. It is only the
representation of road geometric features. The false positive
in the extraction result from only GPS trajectories is mainly
because the GPS trajectories have drifted away from the road.
The road extraction results based on the CNN models with
learning GPS trajectories label from satellite imagery are also
excellent. Since the geometric features and spectral features
of the railways, ditches, and river banks are very similar to
the roads, a small number of linear features are identified
roads mistakenly. In contrast, the results by the models without
learning GPS trajectories label are significantly reduced in
terms of precision. The models misjudge a large number of
railways as roads, and the learning GPS trajectories labels

can effectively avoid such false positives and improve the
precision.

In terms of the integrity of the road extraction results, for
the main road, because the driving range of the floating cars
is mainly concentrated on the main road, almost only the
main road in the suburban area did not pass the vehicles of
the experimental platform within the experimental time range,
resulting in false negatives. Therefore, the integrity of extrac-
tion from only GPS trajectories is the best. The models can
extract most of the main roads that are blocked by buildings
and trees and located in the shadow area after learning to the
GPS trajectories labels. However, some of the main roads are
missed because the ground objects are severely blocked or the
whole section is in the shadow. At the same time, due to the
limitation of the receptive field size of the network, remote
sensing imagery is divided into subimages which sizes are
1024 × 1024. So that some roads are cut too short on the
subimages. As a result, the geometric features are not obvious
and the false negatives occur. Models that do not learn floating
car data have poor integrity of the road extraction, and most
of the roads which are obscured by buildings or trees, and
within the shadows, are missing. For the side roads, the results
extracted from only GPS trajectories are the worst, which is
because the floating GPS trajectories of floating car have low
coverage to the internal roads, rural roads, and factory mine
roads. Roads without GPS trajectories cannot be extracted,
which reduces the integrity of the extraction. The recall of
results extracted from imagery by the neural network model is
all higher than the extraction results from the GPS trajectories.
Like the main roads, the integrity of results obtained by models
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with learning floating car data is higher than that without
learning GPS trajectories. However, due to the width of side
roads is small and severely obscured by objects, the geometric
features and regional features are not obvious on the imagery,
resulting in low extraction integrity of the side roads.

Overall, the extractions from imagery based on CNN models
with learning GPS trajectories have the best extraction effect,
both in terms of extraction precision and recall. The precision
of result and the recall of main roads extraction from only
floating car data are the highest, while the integrity of the side
road extraction is the worst. Models that do not learn floating
car data have a poor effect on road extraction. It is mainly
due to the difference in the sample set of training compared
with the models with learning GPS trajectories. Without
floating car data, the models only learn the available labeled
training data. The DeepGlobe road extraction data set reflects
the surface environment of Southeast Asia and Road and
Building Detection Data set reflects North America. There are
certain differences in the features of natural landscapes and
humane landscapes, which affect the road extraction effect.
It can be seen that adding floating car data to the training set
in the process of neural networks training can improve the
accuracy and integrity of the road extraction.

V. CONCLUSION

For the huge cost generated by hand-label training data
in deep learning, a method of labeling targets with existing
information is proposed. For starters, urban roads are extracted
based on the GPS trajectories of floating car. The floating car
are preprocessed with appropriate conditions, and then a GPS
trajectories rasterization algorithm combining GPS trajectories
points rasterization and linear interpolation rasterization is
proposed to ensure data integrity and avoid data redundancy.
After the GPS trajectories raster map is matched with the
remote sensing imagery, the roads on the remote sensing
imagery are automatically marked. It saves a lot of time
and labor costs for manual labeling and avoids subjective
judgment errors, making road extraction more accurate and
efficient. At the last, CNN models are trained by the data
set with GPS trajectories to extract roads from satellite
imagery.

Make full use of the complementary characteristics of
floating car data and high-resolution remote sensing imageries,
focusing on the fusion of the two types of data. Make the
advantages of both are fully utilized, and a road network with
high accuracy and complete integrity is obtained. A good
balance has been achieved in the overall efficiency and
effectiveness of the complex road extraction in a large area
of the city.
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