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Abstract

Feature matching is a crucial stage for many photogrammetric and remote sensing
applications. This paper proposes a novel and robust feature-matching method based
on a normalised barycentric coordinate system (NBCS), which is superior to a
Cartesian system for this task. A scale-invariant feature transform (SIFT) is performed
to provide initial matches containing both correct matches (inliers) and false matches
(outliers), with a focus on model estimation from contaminated observations (matches
with outliers). An affine-invariant coordinate system called NBCS is defined based on
ratios of areas. The two feature points of a correct match have the same coordinates
under NBCS while false correspondences do not. This principle is adapted into a
hypothesise-and-verify framework. The proposed method is robust, efficient and
effective. Extensive experiments on real geospatial image pairs show that it significantly
outperforms six other state-of-the-art approaches. The source code and datasets used in
this paper have been made public.1

Keywords: affine, hypothesise-and-verify, image registration, normalised
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Introduction

ROBUST FEATURE MATCHING, used to establish reliable correspondences in overlapping image
pairs, is a crucial step for many photogrammetric and remote sensing applications, such as
image registration, image orientation and structure from motion. Robust feature-matching
methods usually consist of two major stages, namely, initial feature matching and outlier
elimination (Ma et al., 2015). In the method proposed in this paper, the focus is on
improving the outlier filtering step.

Feature-matching methods detect distinct structures, including feature points, lines and
regions, and usually seek correspondences between local features by computing their

1 https://sites.google.com/site/jiayuanli2016whu/home
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descriptor vector distances. The scale-invariant feature transform (SIFT) (Lowe, 2004) is the
most well-known method in this category. Many variants of SIFT have been developed for
geospatial image matching and registration. For instance, Sedaghat et al. (2011) proposed a
variant called uniform robust SIFT by a novel feature-selection strategy to improve feature
distribution. Dellinger et al. (2015) proposed a method called SAR-SIFT for synthetic
aperture radar (SAR) image matching. It presented a new gradient definition which is robust
to speckle noise. Similarly, Ma et al. (2017) also introduced a new gradient definition and
proposed an enhanced feature-matching method called PSO-SIFT by combining the
position, scale and orientation of each keypoint. These methods can establish distinct initial
feature correspondences for image registration. However, outliers are still preserved because
of the illumination, viewpoint, rotation, scale, temporal or speckle noise differences between
image pairs.

The second step is then adopted to clean the initial feature correspondences. Outlier
elimination approaches can be roughly classified into two categories, namely, parametric-
based methods and non-parametric ones (Ma et al., 2014; 2015; Li et al., 2016).

Parametric-based methods usually use a transformation model, such as a conformal,
affine or projective (homography) transformation, to describe the geometric relationship
between an image pair, and to estimate such a model from feature correspondences
contaminated by outliers. Random sample consensus (RANSAC) (Fischler and Bolles,
1981) and its variants (Torr and Zisserman, 2000; Chum et al., 2003; Chum and Matas,
2005; Lebeda et al., 2012; Moisan et al., 2012; Hast et al., 2013; Raguram et al., 2013; Wu
et al., 2015) use a hypothesise-and-verify technique for this problem. They alternate
between minimum subset selection and transformation model verification. The model with
the most supporting correspondences is accepted as the correct solution. For example, Torr
and Zisserman (2000) presented maximum likelihood estimation sample consensus
(MLESAC) as a generalised robust estimator of RANSAC, which maximised the likelihood
based on probability. Chum and Matas (2005) used local similarity ordering in their
progressive sample consensus (PROSAC) algorithm to draw the minimal subset of
correspondences, which improved the first stage of RANSAC. Locally optimised RANSAC
(LO-RANSAC) (Chum et al., 2003) introduced a local optimisation stage to improve
RANSAC, which significantly decreased the number of samples drawn. Lebeda et al. (2012)
introduced a truncated quadratic cost function in the local optimisation procedure of LO-
RANSAC. A contrario RANSAC (AC-RANSAC) (Moisan et al., 2012) uses the so-called a
contrario methodology in order to find a model that best fits the data with a confidence
threshold that adapts automatically to noise. Raguram et al. (2013) proposed USAC as a
universal framework for RANSAC-like robust feature matching. It extended the basic
RANSAC to incorporate a number of important practical and computational considerations.
Similarly, optimal RANSAC (Hast et al., 2013) also put several typical RANSAC-like
methods together to produce an algorithm that is repeatable. The main limitation of these
RANSAC-like methods is that they tend to degrade badly if the outlier ratio of the initial
matches becomes large (Li and Hu, 2010; Ma et al., 2014). Many researchers have
introduced affine invariants as geometric constraints for image registration. For instance, Li
and Ye (2012) introduced triangle-area representation (TAR) to improve the traditional
RANSAC algorithm. Zhang et al. (2014) proposed a feature-point descriptor calculated by
the TAR of the k-nearest neighbours (KNN-TAR). Yang and Cohen (1999) used an affine
invariant to develop a class of ordered local affine-invariant features based on the convex
hull. More recently, certain direct methods were presented. Locally linear transforming
(LLT) by Ma et al. (2015) adapted the Bayesian model to describe the outlier elimination
problem and adopted a local geometric constraint within this model. The closed-form
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solution was then estimated by expectation maximisation (EM) (Dempster et al., 1977).
Li et al. (2016) introduced a new cost function based on the lq-norm for robust feature
matching, directly estimating the affine transformation from initial observations contaminated
by outliers.

Non-parametric methods are widely used in computer vision applications. Generally,
they are suitable for both rigid and non-rigid image registration. Graph-matching methods
use graphs to organise extracted features and minimise the structural distortions between
graph networks via an energy function. For instance, Torresani et al. (2008) introduced a
technique called dual decomposition for graph matching, in which they defined a complex
cost function based on the spatial arrangement, texture similarity and geometric consistency
of the keypoints. Cho et al. (2014) introduced a max-pooling strategy to graph matching. In
their method, candidate matches were scored by their most promising neighbours, and the
scores were then used to update the neighbours. Graph-based methods can be also applied
in geospatial image matching, such as Liu et al. (2012) who introduced two-way spatial-
order constraints and two decision-criteria restrictions into their graph-matching framework.
Hu et al. (2015) used spatial relationships and geometrical constraints for reliable feature
matching. However, graph-matching methods usually suffer from high computational
complexity. Vector field consensus (VFC) (Ma et al., 2014) formulates the problem as a
maximum likelihood estimation of a Bayesian model and estimates a consensus of inliers
based on a vector field.

In this paper, a robust parametric-based method is proposed for geospatial image
matching and registration. What is different from the above-mentioned affine-invariant
methods is that a coordinate system is derived, called the normalised barycentric coordinate
system (NBCS), based on ratios of areas. Any image points with Cartesian coordinates can
be transferred into normalised barycentric coordinates (NBC), which are chosen because
they are superior to a Cartesian coordinate system for this task. NBCS is invariant to affine
transformation. Thus, two feature points forming a correct match have the same coordinates
under NBCS. This principle is adapted into a hypothesise-and-verify framework to improve
the robustness and efficiency of traditional methods such as RANSAC. Real experiments on
many geospatial image pairs demonstrate that the proposed method is effective, efficient and
robust.

Robust Feature Matching

This section describes the proposed robust feature-matching method. A definition of
NBCS is presented first and then it is adapted into a hypothesise-and-verify framework for
robust transformation estimation.

Normalised Barycentric Coordinate System (NBCS)

Four coplanar points A1, B1, C1, D1, where any three points are non-collinear (Fig. 1)
can form four triangles. The barycentric coordinates (k1, k2, k3, k4) of the quadrilateral
A1B1C1D1 are defined as the ratios of the areas of these triangles:

k1 : k2 : k3 : k4 ¼ SDA1B1C1 : SDA1B1D1 : SDA1C1D1 : SDB1C1D1 ð1Þ

where SDAiBiCi ði ¼ 1; 2; 3; 4Þ represents the area of triangle DAiBiCi ði ¼ 1; 2; 3; 4Þ. The
barycentric coordinates are then normalised to (u1, u2, u3, u4), where ui ¼ ki=s ði ¼ 1; 2; 3; 4Þ
are the NBCS coordinates and s = k1+ k2 + k3 + k4.
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As pointed out by Hartley and Zisserman (2003), an affine matrix A consists of two
terms, that is, the rotation term R(h) and the deformation term R(�/)DR(/):

A ¼ RðhÞRð�/ÞDRð/Þ ð2Þ

where D is formed by scale parameters r1 and r2,

D ¼ r1 0
0 r2

� �
: ð3Þ

An affine transformation includes translations, rotations and non-isotropic scaling. An
area is invariant to translations and rotations, so it is only affected by the scaling r1 and r2.
The area is scaled by r1�r2 which is equal to det(A). The ratio of areas will eliminate the
scale term det(A) and be invariant under affine transformations. Thus, the NBC of each
quadrilateral is invariant to affine transformations and is unique.

Fig. 1 indicates that points A1, B1, C1, D1 are transformed to points A2, B2, C2, D2 by
an affine transformation T. Based on its definition, the NBC ðu01; u02; u03; u04Þ of the
quadrilateral A2B2C2D2 is:

ðu01; u02; u03; u04Þ ¼
1
s0
� ðk01; k02; k03; k04Þ ¼

detðAÞ
s0

� ðk1; k2; k3; k4Þ

¼ detðAÞ
detðAÞ � s � ðk1; k2; k3; k4Þ ¼ ðu1; u2; u3; u4Þ

ð4Þ

where ðk01; k02; k03; k04Þ are the barycentric coordinates of the quadrilateral A2B2C2D2, and
s0 ¼ ðk01 þ k02 þ k03 þ k04Þ ¼ detðAÞ � s.

Once a correct quadrilateral correspondence (A1B1C1D1, A2B2C2D2) is established, any
image point p1 in the Cartesian coordinate system in image I1 can be transferred to NBCS
based on A1B1C1D1 (Fig. 2). The NBC of p1 is:

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 4 : : :

: : :
A B C A B D AC D B C D

A B C A B D A C D B C D
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S S S S

λ λ λ λ Δ Δ Δ Δ

Δ Δ Δ Δ

=

=

Fig. 1. The invariance of barycentric coordinates. A1B1C1D1 is a quadrilateral and A2B2C2D2 is the
corresponding quadrilateral after applying an affine transformation T. Four triangles can be formed from each
quadrilateral and its barycentric coordinates are the area ratios of these triangles. The normalised barycentric

coordinates (NBC) of the correspondence are equal.
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NBCðp1Þ ¼ ðSp1A1B1 ; Sp1B1C1 ; Sp1C1D1 ; Sp1A1D1Þ=q
q ¼ ðSp1A1B1 þ Sp1B1C1 þ Sp1C1D1 þ Sp1A1D1Þ

�
: ð5Þ

In the same way, any image point p2 in image I2 can also be transferred to NBCS
based on A2B2C2D2. As NBCS is invariant to affine transformations, the two feature points
forming a correct match have the same coordinates under NBCS. The proposed coordinate
system is superior to Cartesian coordinates for such a task due to this important property.

Hypothesise-and-Verify with the NBC Principle

Given a geospatial image pair (I1, I2), firstly extract N initial correspondences
C ¼ fðxn; ynÞgNn¼1 by SIFT, where xn and yn are the image coordinates of feature points in
images I1 and I2. The goal of robust feature matching is to establish reliable matches, in
other words, distinguishing inliers from outliers. The local surface model described by a
geospatial image can be treated approximately as a plane compared with the flying/orbital
height of the camera, especially for satellite and high-altitude aerial images (Li et al., 2016).
Many researchers use a 2D affine transformation to approximately model the geometric
relationship between a geospatial image pair. Thus, (xn, yn) satisfies the following
equation if it is an inlier:

yn ¼ TðxnÞ ¼ Axn þ t ð6Þ

where A is a 29 2 affine matrix and t is a 29 1 translation column vector.
As noted earlier, NBC is an invariant under an affine transformation. Thus, if four

correct correspondences are selected from a correspondence set C, ideally, the
correspondence quadrilateral must satisfy equation (4). In practice, a geospatial image pair
does not strictly satisfy an affine transformation and thus the selected correspondence
quadrilateral should satisfy the following relationship:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

ðui � u0iÞ2
vuut \d ð7Þ

where d is a small value that checks if a correspondence has nearly the same NBC. This
principle is adapted into a hypothesise-and-verify framework and develops the proposed

Fig. 2. The normalised barycentric coordinate system (NBCS). Points p1 in image I1 and p2 in image I2 have
the same coordinates in the NBCS under the affine transformation T.
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robust feature-matching algorithm. First, four feature correspondences are randomly picked
and a check made as to whether the invariance of NBC is satisfied. Second, if equation (7)
is satisfied, then an affine transformation can be estimated and this solution verified with the
remaining matches. The proposed method alternately performs these two stages until a
confident solution is determined. The SIFT algorithm usually provides hundreds of initial
correspondences with matching scores. However, an affine transformation only has six
degrees of freedom. Too many correspondences will not improve the accuracy while
decreasing the efficiency. Thus, sample M ðM\NÞ correspondences with the best matching
scores from set C to estimate the transformation model T, and then apply T on C to find the
inlier set:

Cinlier ¼ fðxn; ynÞgKn¼1 s.t. yn � TðxnÞ\e

where ɛ is an outlier rejection threshold (ɛ = 3 in these experiments). The method is
summarised in Algorithm 1.

Algorithm 1: Robust feature matching based on barycentric coordinates

Input: a geospatial image pair 1 2( , )I I

Output: reliable matches 1{( , )}Kinlier n n nC == x y ,
transformation T

1 Generate initial matches 1{( , )}Nn n nC == x y by SIFT on 1 2( , )I I ;

2 Sample ( )M M N≤ best matches sampledC C⊆ according to their 

matching scores;
3 repeat
4 Hypothesise-step:
5 Randomly pick 4 correspondences from sampledC ;

6 Compute their NBCs;
7 Verify-step:
8 if equation (7) is true
9 Compute transformation iT , verify iT by C
10 else
11 Continue;
12 end
13 until find a confident solution T
14 Apply T on C to find inlierC

Experimental Results

This section reports performance comparisons between the proposed method and the
following six other state-of-the-art methods:

(1) LLT – locally linear transforming (Ma et al., 2015);
(2) VFC – vector field consensus (Ma et al., 2014);
(3) RANSAC – random sample consensus (Fischler and Bolles, 1981);
(4) MLESAC – maximum likelihood estimation sample consensus (Torr and

Zisserman, 2000);
(5) AC-RANSAC – a contrario RANSAC (Moisan et al., 2012); and
(6) FSC – fast sample consensus (Wu et al., 2015).
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For LLT, RANSAC, MLESAC and FSC, this research used an affine transformation as the
geometric model; for AC-RANSAC, a homography matrix was used; VFC is a non-
parametric method. The outlier rejection threshold of RANSAC, MLESAC, FSC and the
proposed method was set to 3 pixels. Note that all the values reported in this paper are the
average values of 20 image pairs with 50 independent tests (Table I). Parameters for each
method are tuned to provide the best result and then fixed. All the experiments were
performed on the same laptop (i5, 2�5 GHz Intel Core, 8 GB memory) and all the methods
were implemented using MATLAB, except AC-RANSAC (implemented by C++).

Dataset and Setting

To evaluate the proposed method, 20 typical geospatial image pairs were used. The
details are summarised in Table I, and thumbnails of these image pairs are shown in Fig. 3.
The ground sample distance (GSD) of these images varies from 0�5 to 30m, including high-,
medium- and low-resolution geospatial images. These 20 image pairs suffer from substantial
distortions. For instance, local geometric distortions are serious in multitemporal image pairs;
the photometric information is significantly different between multisensor image pairs; and
the overlapping regions of aerial image pairs 10 to 20 are extremely small.

For each image pair, five evenly distributed matches are manually selected with sub-
pixel accuracy to estimate an accurate affine transformation to act as ground truth. VLFeat
(an open-source library of computer vision algorithms by Vedaldi and Fulkerson, 2010) is
used to perform SIFT for initial correspondence generation. The matching distance threshold
for SIFT is set to 1�2 in all experiments. The matches with small residuals (smaller than
ɛ = 3) after ground-truth transformation are chosen as ground-truth inliers. The same initial
SIFT matches are used for all seven methods. Precision, recall and f-score are adopted as
the evaluation metrics, where precision is the percentage of the true inliers in all detected
matches and recall is computed by dividing the detected inlier number by the ground-truth
inlier number. The f-score combines both recall and precision metrics into a single metric
that reflects the overall performance:

f -score ¼ 2 � precision � recall
precisionþ recall

� 100%: ð8Þ

The maximum error (ME) and root mean square error (RMSE) of the proposed method are
also reported.

Parameter and Feature-matching Study

There are two important parameters in the proposed method, namely, the number of
sampled matches M and the small tolerance threshold for the NBC constraint d. To
determine the best parameters, firstly, M was fixed at 100 and d was incremented from 0�01
to 0�1 in steps of 0�01. For each value of d, the proposed method was performed on the
dataset, and the precision, recall, f-score and running time metrics were calculated
(Table II). As can be seen, the results only have very small differences when d changes
from 0�01 to 0�05. The best f-score is achieved when d = 0 03. Then, d was fixed at 0�03
and M changed from 25 to 200 in increments of 25 (Table III). As shown, the f-score
increases as M increases until M = 100 and then it slightly decreases as M increases further.
Generally, more data is better. However, in the proposed method, the correspondences were
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sampled based on their matching scores. Thus, the sampled correspondences do not have
the same precision. Next, d = 0 03 and M = 100 were fixed in the subsequent experiments.
Note that M = 100 is the best for this dataset. However, if the outlier ratio is rather high,

Table I. Input geospatial image pairs. Pairs 1 to 8 use satellite imagery; pairs 10 to 20 are aerial; pair 9 is composite.

No. Image pair
platform

Image size
(pixels)

GSD
(m)

Date Location

1 WorldView-2 4059 350 0�5 2011 USA –
CaliforniaWorldView-2 4059 350 0�5 2014

2 Landsat TM 5129 512 30 1992 Brazil –
AmazonLandsat TM 5129 512 30 1994

3 JERS-1 2569 256 18 1995 Brazil –
AmazonJERS-1 2569 256 18 1996

4 Landsat TM 5129 512 30 1990 USA –
IowaLandsat TM 5129 512 30 1994

5 SPOT-2 2569 256 20 1995 Brazil –
BrasiliaLandsat TM 2569 256 30 1994

6 SPOT-5 8009 800 2�5 2002 China –
BeijingSPOT-6 8009 800 1�5 2012

7 SPOT-5 8009 800 2�5 2003 France –
ParisSPOT-7 8009 800 1�5 2014

8 SPOT-5 10009 1000 2�5 2008 China –
ShanghaiSPOT-5 10009 1000 2�5 2012

9 Radarsat-2 8009 800 3 2013 China –
JiangsuAirborne SAR 8009 800 3 2013

10–20 Aerial photographs 13919 1374
to

14599 1380

0�5 2011 USA –
Illinois

Fig. 3. Thumbnail images of the datasets in Table I.
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such as 10 000 initial matches with only 100 correct matches, M = 100 may not contain a
set that passes the NBCS test. Thus, a fine-to-coarse strategy is adopted where, initially, M
is set to 100. If a good solution can be obtained, the procedure outputs the results;
otherwise, the value of M is increased by a factor of three and Algorithm 1 is performed
again until a good solution is found.

To study the robustness to different initial feature-matching methods, SIFT (Lowe,
2004), PSO-SIFT (Ma et al., 2017) and SAR-SIFT (Dellinger et al., 2015) were used to
generate initial feature correspondences (Table IV). As shown, different initial feature-
matching methods have almost no influence on the proposed method.

NBCS is the major contribution of this paper. To prove that NBCS outperforms the
Euclidean coordinate system for the geospatial robust feature-matching problem, an isolated
variable experiment was performed. In detail, the NBCS constraint is removed from

Table IV. Study of different initial feature-matching methods.

Matching
method

Precision
(%)

Recall
(%)

f-score
(%)

Time
(s)

ME
(pixels)

RMSE
(pixels)

SIFT 96�84 97�34 97�07 1�16 3�18 1�28
PSO-SIFT 94�79 99�05 96�79 1�25 3�15 1�31
SAR-SIFT 96�38 97�18 96�72 1�21 3�21 1�38

Table V. Isolated variable experiment. Note that NBCS- preserves many outliers with large residuals; thus, its
ME and RMSE are also very large – values greater than 50 pixels are indicated with an asterisk (*).

Method Precision
(%)

Recall
(%)

f-score
(%)

Time
(s)

ME
(pixels)

RMSE
(pixels)

NBCS� 86�15 70�66 73�68 2�34 * *
NBCS+ 96�84 97�34 97�07 1�16 3�18 1�28

Table III. Study of parameter M, with d fixed at 0�03. Best overall result is shown in bold.

Metric
M (d = 0�03)

25 50 75 100 125 150 175 200

Precision (%) 91�3 92�4 96�0 97�2 97�0 96�9 96�6 96�4
Recall (%) 88�2 92�7 95�9 96�5 95�8 95�7 95�4 94�3
f-score (%) 88�2 92�4 95�7 96�5 96�1 96�0 95�7 94�9
Time (s) 5�3 2�7 1�9 1�3 1�8 1�9 2�0 2�4

Table II. Study of parameter d, with M fixed at 100. Best overall result is shown in bold.

Metric
d (M = 100)

0�01 0�02 0�03 0�04 0�05 0�06 0�07 0�08
Precision (%) 97�2 97�4 97�3 96�8 96�8 95�5 95�5 94�8
Recall (%) 96�1 96�2 96�9 96�0 95�5 93�8 92�8 91�1
f-score (%) 96�1 96�3 96�9 96�2 95�9 94�3 93�6 92�2
Time (s) 2�4 1�4 1�2 1�0 0�7 0�6 0�5 0�5
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Algorithm 1 (denoted by NBCS-) and NBCS- is performed on the dataset. Next, the NBCS
constraint is added (denoted by NBCS+) and the experiment is performed again. The
consequent precision, recall, f-score, running time, ME and RMSE metrics are reported in
Table V. As can be seen, NBCS+ significantly outperforms NBCS-, which gains 23�4% in
terms of f-score compared with NBCS-. Since NBCS- preserves many false matches with

(a) Initial SIFT matches. (b) LLT result.

(c) VFC result. (d) RANSAC result.

(e) MLESAC result. (f) AC-RANSAC result.

(g) FSC result. (h) Proposed method's result.

Fig. 4. Qualitative comparisons for image pair 8 (SPOT-5 satellite images). The blue and red lines represent
correct and false matches, respectively. For better visualisation, no more than 100 randomly selected matches

are presented.
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large residuals in their results, the ME and RMSE of NBCS- are very large. In addition,
with NBCS constraints, the number of transformation estimation times in Algorithm 1 can
be largely reduced. Thus, the running time of NBCS+ is less than NBCS-.

Results and Discussion

Qualitative Comparisons. Fig. 4 illustrates the qualitative results on image pair 8
(SPOT-5 images near Shanghai, China). This pair has an initial inlier rate of 8�94%, which
suffers from severe temporal changes (the component images were taken four years apart)
and rotational changes. As shown, most detected matches using LLT are outliers; as a
result, its precision is very low. RANSAC only extracts a few true inliers, most of which
are filtered as outliers; thus, the recall accuracy is very low. Although VFC achieves a very
impressive result on this image pair, it preserves many more outliers than the proposed
method. MLESAC, AC-RANSAC and FSC achieve similar results to the proposed method
on this image pair.

Fig. 5 reports the qualitative comparisons on image pair 13 (false-colour infrared aerial
photographs over Illinois, USA) with an initial inlier rate of 1�6%, which suffers from an
extremely small overlapping region. As can be seen, LLT, VFC, MLESAC, AC-RANSAC
and FSC have totally failed. RANSAC performs much better; however, it still preserves
some gross errors. The proposed method achieves the best performance.

Quantitative Evaluation. The quantitative comparisons are reported in Table VI. The
average inlier rate of these 20 image pairs is 12�62%. In other words, the initial matches
provided by SIFT contain a massive average outlier rate of 87�38%. Matching with this
particular data is very difficult due to the extremely low inlier rate (14 of the 20 image pairs
have an inlier rate lower than 10%).

As can be seen, LLT and VFC perform poorly on this dataset. The f-score for these
two techniques is lower than 70%. This may be expected if their methodologies are
assessed. VFC is a non-parametric method which does not estimate the transformation. As a
result, noisy correspondences with relatively low locational accuracy may not be
distinguished from gross errors effectively. LLT is an iterative method based on EM, which
may not converge to a correct solution with challenging image pairs. The recall accuracy of
AC-RANSAC is very low. RANSAC and MLESAC perform much better than LLT and
VFC; however, they still preserve many outliers with their f-score being about 80%. They
estimate the transformation parameters by closed-form methods, which are sensitive to noise
and the estimated transformation may be skewed. FSC uses a small distance ratio to sample
the initial feature correspondences and estimates affine transformation on the sampling set,
which improves the performance compared with the traditional RANSAC method. The
proposed method achieves the best accuracy on both the precision and recall metrics,
meaning the method achieves the highest f-score. The proposed method uses the NBC
principle to select subsets for transformation estimation, which largely improves robustness
and reduces the transformation estimation trails compared with traditional hypothesise-and-
verify methods such as RANSAC. As shown, the proposed method gains 28�7%, 27�9%,
17�0%, 15�6%, 26�5% and 8�8%, in terms of f-score, compared with LLT, VFC, RANSAC,
MLESAC, AC-RANSAC and FSC, respectively. The average ME and RMSE of the
proposed method are 3�18 and 1�28 pixels, respectively. There are no gross errors in the
results because the outliers in the proposed method are correspondences with relatively low
precision. In addition, the running time of the proposed method is only slightly higher than
LLT (the method with the shortest time). It is the third fastest (note that the fastest method,
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AC-RANSAC, is implemented using C++) of these seven methods. In the proposed method,
a non-uniform sampling strategy and the NBC principle are adopted to reduce the
computational complexity significantly.

(a) Initial SIFT matches. (b) LLT result. (c) VFC result. (d) RANSAC result.

(e) MLESAC result. (f) AC- RANSAC result. (g) FSC result. (h) Proposed method. 

Fig. 5. Qualitative comparisons of image pair 13 (aerial photographs). The blue and red lines represent correct and
false matches, respectively. For better visualisation, no more than 100 randomly selected matches are presented.

Table VI. Quantitative evaluation of the different feature-matching methods over the 20 datasets. Best results
are shown in bold.

Metric Proposed LLT VFC RANSAC MLESAC AC-RANSAC FSC

Precision (%) 96�84 63�85 61�75 88�18 91�19 83�27 95�87
Recall (%) 97�34 74�24 79�77 75�87 76�69 68�74 86�81
f-score (%) 97�07 68�32 69�16 80�03 81�45 70�57 88�96
Time (s) 1�16 1�01 15�95 36�21 5�21 0�24 (C++) 2�07
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Limitations of the Proposed Method. There are two main drawbacks to the proposed
method:

(1) The running time may be affected by the initial inlier rates. The lower the initial
inlier rate, the higher the time cost.

(2) The invariance of NBC will be not satisfied by non-rigid or close-range image
pairs. Thus, the proposed method is not suitable for all types of image matching.

Conclusion

In this paper, an affine-invariant coordinate system called the normalised barycentric
coordinate system (NBCS) is defined, which is superior to the Cartesian coordinate system
for robust image matching and registration. The defined coordinate system has been adapted
into a hypothesise-and-verify framework. The qualitative and quantitative comparisons of 20
typical geospatial image pairs demonstrate the power of the proposed method, which
significantly outperforms six other state-of-the-art methods (LLT, VFC, RANSAC,
MLESAC, AC-RANSAC and FSC).
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R�esum�e

L’appariement de caract�eristiques est une �etape cruciale pour de nombreuses applications de la
photogramm�etrie et de la t�el�ed�etection telles que l’enregistrement d’images et la reconstruction 3D. Dans cet
article, nous proposons une m�ethode d’appariement de caract�eristiques nouvelle et robuste bas�ee sur le syst�eme
de coordonn�ees barycentriques normalis�ees (NBCS), qui est sup�erieur au syst�eme de coordonn�ees cart�esiennes
pour cette tâche. Nous effectuons une transformation d’entit�e invariante par changement d’�echelle (SIFT) pour
fournir des correspondances initiales contenant �a la fois des correspondances correctes (inliers) et des
correspondances fausses (outliers), en insistant sur l’estimation de mod�ele �a partir d’observations contamin�ees
(corresponsances fausses). Nous d�efinissons un syst�eme de coordonn�ees invariant par transformation affine
appel�e NBCS bas�e sur des rapports de surfaces. Les deux points caract�eristiques d’une correspondance
correcte ont les mêmes coordonn�ees sous NBCS, contrairement aux correspondances fausses. Nous adaptons ce
principe selon une approche par hypoth�ese et v�erification. La m�ethode propos�ee est robuste, efficace et
efficiente. Des exp�eriences approfondies sur des paires d’images r�eelles de t�el�ed�etection montrent qu’elle
surpasse significativement les approches de l’�etat de l’art. Tous les codes sources et jeux de donn�ees utilis�es
dans le document sont rendus publics.
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Zusammenfassung

Die Merkmalsgest€utzte Bildzuordnung ist ein wichtiger Schritt f€ur viele photogrammetrische Anwendungen
wie Bildregistrierung und 3D-Rekonstruktion. In diesem Beitrag schlagen wir eine neuartige und robuste
Merkmalsgest€utzte Bildzuordnungsmethode auf der Grundlage eines normalisierten Baryzentrischen
Koordinatensystems (NBCS) vor, das einem kartesischen Koordinatensystem f€ur diese Aufgabe €uberlegen ist.
Zun€achst wird eine skaleninvariante Merkmalstransformation (SIFT) durchgef€uhrt, um erste Zuordnungen zu
liefern, die sowohl korrekte Zuordnungen als auch falsche Zuordnungen (Ausreißer) enthalten. Dann wird auf
die Modellsch€atzung von kontaminierten Beobachtungen (€Ubereinstimmungen mit Ausreißern) fokussiert. Es
wird ein affin-invariantes Koordinatensystem namens NBCS auf der Grundlage von Verh€altnissen von Bereichen
eingef€uhrt. Zwei homologe Merkmalspunkte einer korrekten €Ubereinstimmung haben die gleichen Koordinaten
im NBCS Koordinatensystem, w€ahrend falsche Korrespondenzen diese Eigenschaft nicht besitzen. Dieses Prinzip
wird in eine Hypothesen-und-Verifizierungs-Struktur eingebaut. Die vorgeschlagene Methode ist robust, effizient
und effektiv. Umfangreiche Experimente an realen Bildpaaren zeigen, dass die vorgeschlagene Methode sechs
andere, moderne Ans€atze deutlich €ubertrifft. Der gesamte Quellcode und der Datensatz, der in diesem Beitrag
verwendet wird, sind €offentlich zug€anglich.

Resumen

La correspondencia de im�agenes es una etapa crucial en muchas aplicaciones de fotogrametr�ıa y
teledetecci�on, como el registro de im�agenes y la reconstrucci�on en 3D. En este art�ıculo proponemos un nuevo y
robusto m�etodo de correspondencia basada en caracter�ısticas que se basa en un sistema de coordenadas
baric�entrico normalizado (NBCS), que es superior al sistema de coordenadas cartesianas para esta tarea. Se
aplica el descriptor SIFT para proporcionar correspondencias iniciales que contienen tanto correspondencias
correctas (inliers) como correspondencias falsas (outliers), y con un enfoque en la estimaci�on del modelo a
partir de observaciones contaminadas (correspondencias con outliers). Se define, en base a la raz�on de �areas,
un sistema de coordenadas af�ın-invariante (NBCS). Los dos puntos de una correspondencia correcta tienen la
misma coordenada en el sistema NBCS mientras que las correspondencias falsas no cumplen esta propiedad.
Adaptamos este principio a un marco de hip�otesis y verificaci�on. El m�etodo propuesto es robusto, eficiente y
efectivo. Los experimentos extensivos sobre pares de im�agenes geoespaciales reales muestran que el m�etodo
propuesto supera significativamente otros m�etodos del estado del arte actual. Todo el c�odigo fuente y el
conjunto de datos utilizados en el documento se han hecho p�ublicos.

摘要

特征匹配是许多遥感应用的关键步骤。本文提出一种新颖鲁棒的基于标准化重心坐标系(NBCS)的特

征匹配方法,该坐标系相比于笛卡尔坐标系更适合于特征匹配任务。我们采用SIFT算法提供包含正确匹配

(内点)和错误匹配(外点)的初始匹配对,并且关注于从被污染的观测值中(包含粗差)估计模型。我们基于面

积比定义了一种仿射不变坐标系,称为NBCS。正确匹配的两个特征点在NBCS下具有相同的坐标,而错误匹

配点不遵循该特性。我们将这一原理应用于假设-检验框架下。所提出的方法是鲁棒的,快速的和有效的,即
它在我们的数据集。对真实遥感图像对的广泛实验显示其显著优于其他先进方法。本文中使用的所有源代

码和数据集都是公开的。
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