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Abstract 
Camera exterior orientation is essential in many photogramme-
try and computer vision applications, including 3D reconstruc-
tion, digital orthophoto map (DOM) generation, and localization. 
In this paper, we propose a new formulation of exterior orienta-
tion that is robust against gross errors (outliers). Different from 
classic optimization methods whose cost function is based on 
the l2-norm of residuals, we use lq-norm (0<q<1) instead. We 
reformulate the new cost function as an augmented Lagrangian 
function because it is not strictly convex. In addition, we em-
ploy the alternating direction method of multipliers (ADMM) to 
decompose the augmented Lagrangian function into three sim-
ple sub-problems and solve them iteratively. Our work recovers 
the orientation and position of a camera from outliers contami-
nating observations without any gross error detection stage such 
as random sample consensus (RANSAC). Extensive experiments 
on both synthetic and real data demonstrate that the proposed 
method significantly outperforms state-of-the-art methods and 
can easily handle situations with up to 85 percent outliers. The 
source code of the proposed algorithm is made public.  

Introduction
Camera exterior orientation, which is also known as perspective-
n-point (PnP) problem in computer vision, refers to recovering the 
orientation and position of a perspective camera from n 3D-to-
2D point correspondences. The PnP problem is a basic aspect of 
many computer vision and photogrammetric applications (e.g., 
camera localization, digital elevation model (DEM) production, 
incremental structure-from-motion, etc.), which has been studied 
for several decades. However, only a few studies have focused on 
the PnP problem with outliers in point correspondences.

The majority of PnP solutions do not directly address prob-
lems containing outliers. These solutions simply assume that 
all point correspondences are inliers. For example, Zheng et 
al. (2013) validated their method on simulated data that were 
contaminated by Gaussian noise with a zero-mean and a fixed 
deviation σ = 2 pixels. Traditional methods usually combine 
P3P algorithms with random sample consensus (RANSAC) 
(Fischler and Bolles, 1981) schemes to reject outliers during a 
preprocessing stage before the PnP methods are applied. How-
ever, RANSAC significantly reduces the efficiency, particularly 
for problems with numerous outliers.

Recently, Ferraz et al. (2014) proposed a fast, robust, and 
accurate PnP algorithm (REPPnP) with an algebraic outlier 
rejection stage. Their novel contribution was introducing a 
novel outlier rejection mechanism within the pose estimation 
framework. The PnP problem was formulated as a low-rank 
homogeneous system, and the solution was obtained by 
solving for its 1D null space. They assumed that rows of the 

homogeneous system which perturbed its null space were 
outliers. These outliers were then progressively rejected on 
the basis of an algebraic criterion. Their proposed REPPnP dealt 
well with situations with up to 50 percent outliers. However, 
REPPnP was ineffective when the outlier rate exceeded 50 per-
cent. Moreover, their mechanism cannot handle planar cases 
and ordinary cases under a uniform framework.

In this paper, we introduce a new PnP solution that is more 
robust than state-of-the-art algorithms.

Compared with REPPnP (Ferraz et al., 2014), our method 
does not require any outlier detection mechanism and 
handles all point configurations (planar, ordinary, and quasi-
singular) in the same manner. Our work recovers the pose of a 
camera from correspondences corrupted by numerous outliers 
without any outlier detection stage such as RANSAC. The cen-
tral idea of our method is to reformulate the PnP problem as 
an optimization function using lq-norm (0<q<1) instead of l2-
norm. This idea is motivated by many other works where the 
lq-norm was successfully applied, such as signal reconstruc-
tion (Marjanovic and Solo, 2012; Marjanovic and Hero, 2014; 
Marjanovic and Solo, 2014), compressive sensing (Candè and 
Wakin, 2008), point cloud processing  (Bouaziz et al., 2013; Li 
et al., 2016). The lq-norm is a sparsity-inducing norm that can 
minimize the number of non-zero residuals. Thus, it inher-
ently rejects outliers. The lq-norm cost function is then refor-
mulated as an augmented Lagrangian function and solved by 
the alternating direction method of multipliers (ADMM) (Boyd 
et al., 2011). An extensive experimental evaluation on both 
synthetic and real data shows that the proposed approach 
significantly outperforms the state-of-the-art methods and can 
easily handle situations with up to 85 percent outliers.

Related Work
The minimal configuration of the PnP problem is the P3P 
(DeMenthon and Davis 1992, Gao et al., 2003; Kneip et al., 
2011) or P4P (Horaud et al., 1989) problem. In these cases, 
there exist closed-form solutions finding roots of the formed 
fourth- or fifth-degree polynomial systems. Unfortunately, 
these solutions are sensitive to outliers and noise. The PnP 
problem, thus, focuses on over-constrained cases with larger-
scale correspondence sets. Ideal PnP solutions should have 
the following properties: fast and unique convergence, global 
optimality, high accuracy, and robustness. However, finding 
a balance between all these features is difficult. The literature 
on the PnP problem can be roughly classified into two catego-
ries: non-iterative and iterative methods.

The most straightforward non-iterative PnP algorithms 
are the direct linear transformation (DLT) (Abdel-Aziz and 
Karara, 2015; Hartley and Zisserman, 2003) and its variations 
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(Shan, 1996; Tsai, 1987). These methods are not very accurate 
because calibrated camera parameters are not considered. 
Several notable works have been proposed in recent years. 
Schweighofer and Pinz (2008) formulated the PnP problem by 
using an object space cost and relaxed it into a semi-definite 
positive program (SDP). The limitation of SDP was that the 
relaxation causes accuracy loss. Lepetit et al. (2009) proposed 
an efficient PnP solution (EPnP), which was the first close-
form solution reducing the complexity to O(n). Their main 
contribution was the use of four virtual points to express the 
3D object points. However, this approach applied a lineariza-
tion technique, which might lose accuracy for slightly redun-
dant cases with n = 4 or n = 4, as explained in Li et al. (2012).

To design more accurate non-iterative solutions, polyno-
mial solvers without linearization were applied in the subse-
quent works. The direct least square (DLS) (Hesch and Roum-
eliotis, 2011) method, developed by Hesch and Roumeliotis, 
solved a fourth order polynomial system that was produced 
by a nonlinear least-squares cost function with the multiplica-
tion matrix technique. Unfortunately, as explained in Zheng 
et al. (2013), DLS adopted the Cayley-Gibbs-Rodriguez (CGR) 
to parameterize rotation, which would degenerate at 180 
degrees. Li et al. (2012) presented a multi-stage framework 
called RPnP, which obtained a set of fourth order polynomials 
by dividing object points into several 3-point subsets and then 
solved a special cost function. Zheng et al. (2013) proposed a 
scalable solution (ASPnP) by minimizing algebraic error. They 
used unit quaternion to represent the rotation matrix and ob-
tained a global optimum based on the Gröbner basis solver. In 
another study of theirs, OPnP (Zheng et al., 2013), the rotation 
was parameterized by a non-unit quaternion. The PnP prob-
lem was then reformulated as an unconstrained optimization 
problem. These more recently proposed methods can usu-
ally achieve the complexity of O(n) and be initial-guess free, 
which are more suitable for real time applications.

On the other hand, iterative approaches formulate the 
PnP problem from a nonlinear least-squares perspective by 
iteratively minimizing geometric errors or algebraic errors. 
Typically, the Gauss-Newton method can be applied to the 
nonlinear optimization problems (Lowe, 1991). Iterative 
methods usually have better accuracy while being more time-
consuming compared with non-iterative ones. Furthermore, 
whether they can correctly converge relies on having a good 
initial guess. POSIT (Dementhon and Davis, 1995) iteratively 
solved a linear system with scaled orthographic projections to 
obtain a better approximation of the true pose. The drawback 
of this work is its failing in quasi-singular cases or planar 
cases, which often appear in photogrammetric applications. 
A natural alternative to geometric error is algebraic error. Lu 
et al. (2000) developed a method to minimize the collinearity 
error of the object space. In the Procrustes PnP (PPnP) (Garro et 
al., 2012), the authors defined the PnP problem as an anisotro-
pic orthogonal Procrustes problem. More recently, Ferraz et 
al. (2014) proposed a fast, robust, and accurate PnP solution 
with algebraic outlier rejection. Their main contribution was 
introducing a novel outlier rejection mechanism into pose 
estimation framework.

Although most of the above-mentioned methods can 
achieve impressing results, the essential problem of dealing 
with outliers has not been well-addressed. As mentioned 
above, traditional methods usually combine P3P solutions 
with RANSAC-like schemes as a preprocessing stage. The 
REPPnP becomes unreliable in situations with more than 50 
percent outliers. 

Motivated by studies in the literature Marjanovic and Solo 
(2012 and 2014), we reformulate the PnP problem as a lq opti-
mization problem and derive its solution by using the aug-
mented Lagrangian function and ADMM. The later experiments 

will show that the proposed method can yield accurate results 
in situations with up to 85 percent outliers.

Classical Exterior Orientation
Given n non-collinear 3D points qi = [xi, yi, zi]T,  
i = 1, 2, …, n, n≥3 in an object reference system and their cor-
responding normalized 2D image projections pi = [ui, vi]T, we 
can recover the pose of the image. Assume that the camera in-
ternal calibration matrix K is known, the perspective camera 
model which maps 3D reference points to 2D projections can 
be formulated as follows:
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are an orthogonal rotation matrix and a translation vector, 
respectively. And di is a depth factor. The goal of the PnP prob-
lem is to recover the pose (R, t) of a camera from Equation 1.

After elimination of depth factor di, Equation 1 is trans-
formed to:
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Equation 3 is called the collinearity equation in photogram-
metry and is the mathematic basis of many other problems 
such as bundle adjustment and structure from motion.

Classical iterative methods usually minimize the following 
nonlinear least-squares cost function:

	
arg min

,R t
p pi i

i

n

−
=
∑ 2

2

1 	 (4)

in which p̂i is the calculated value of the observations pi based 
on Equation 3 and the estimated pose (R, t), and ||·||2 is a l2-
norm operator.

In the next section, we will detail our lq-norm based cost 
function and describe how to solve it using the augmented 
Lagrangian function and ADMM.

Robust PnP solution Based on lq Optimization
When the observations are corrupted by outliers, we hope that 
the PnP solver is able to automatically classify the residual 
vector v = [v1, v2, …, vn] into an inlier set I(vi||vi|≈0) and an 
outlier set O(vi||vi|0). However, the classic least-squares 
cost is based on a fundamental assumption that observations 
are subjected to a normal distribution and free of outliers. The 
estimated pose will be biased in order to reduce the large re-
siduals of outliers (see Figure 1), which is a typical technique 
called residual adjustment. In contrast, l0-norm (Mohimani 
et al., 2007) is designed for this problem because it measures 
the number of non-zero elements in a residual vector. The 
l0-norm is highly non-convex; thus, the l1-norm (Mazumder et 
al., 2010) is usually applied as the closest convex relaxation 
of the l0-norm. Recently, another sparsity-inducing norm, 
i.e.,the lq-norm shows great potential and can achieve better 
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performance than the l1-norm, as shown in (Marjanovic and 
Solo, 2012 and 2014). The results of the lq-norm are sparser 
than the l1-norm and are less biased, as evidenced in (Chen et 
al., 2010). Motivated by that, we reformulate the cost function 
based on the lq-norm metric:

	
arg min

,R t
p pi i q

q

i

n

−
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∑

1 	
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where ||·||q is a lq-norm (0<q<1) operator.
The cost function is non-convex and non-smooth. To 

optimize this problem, we form it as a lq-norm penalized 
least squares (lqLS) problem which has been well studied by 
Marjanovic and Solo (2014). By introducing auxiliary vari-
ables M=[m1, m2, …, mn] 

into Equation 5, we rewrite the cost 
function as:
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This is a constrained optimization function which is usu-
ally reformulated as an unconstrained one by using Lagrang-
ian function. However, the strict convexity property is not 
satisfied in our cost function and dual ascent method may 
fail. Fortunately, augmented Lagrangian methods can yield 
convergence without assumptions of strict convexity. Thus, 
the augmented Lagrangian of Equation 6 is:
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in which Λ = [λ1, λ2, …, λn] are dual variables or Lagrange mul-
tipliers and ρ > 0 is a penalty parameter. 

We employ ADMM to decompose the function into three 
sub-problems because two sets of variables are present (pose 
(R, t) and M) in Equation 7. ADMM is a method that combines 
the superior convergence of the basic multipliers and the 
decomposability property of the dual ascent method, which is 

why we choose ADMM instead of the basic method of multipli-
ers. The ADMM consists of following iterations:
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where the superscript k denotes the iteration counter. Similar 
to the dual ascent method, sub-problem 1 and sub-problem 
2 are the variable (R,t,M) minimization step, sub-problem 3 
is a dual variable update step. In sub-problem 1, only vari-
able M is to be estimated, while others are fixed. In the same 
way, the pose (R,t) is the only variable in sub-problem 2. The 
ADMM alternates between these three steps until convergence. 
Details about augmented Lagrangian methods and ADMM can 
be found in literature (Boyd et al., 2011).

Combining Equations 8, 9, and 7, sub-problem 1 and sub-
problem 2 can be detailed as follows:
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used for compactness of notation.
Equation 11 is a non-trivial lq-norm penalized least squares 

(lqLS) problem and each variable mi can be solved indepen-
dently. We first consider the scalar version of Equation 11:
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as proven in (Marjanovic and Solo, 2012 and 2014), the opti-
mal solution m̂ is given by:
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Figure 1. The penalty function curves: For large values of q, 
outliers or large noise are still very large after penalty func-
tion mapping; thus, the estimated pose will be biased in 
order to reduce the large residuals of outliers or noise. 
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sgn(·) is the signum function, and β*∈(βa|δ|) is the larger one 
in the two solutions of the following iteration:

	
f f1 1= =( )β β β δ ρ β

k k qq+ −−( ) where  
	

(16)

with initial guess β0=(βa+|δ|)/2. Marjanovic and Solo (Marja-
novic and Solo, 2012 and 2014) pointed out that the solution 
would yield convergence within two iterations. 

In sub-problem 1, the variable mi is a 2D vector, and Equa-
tion 14 cannot be adopted directly. Fortunately, it can be 
turned into a scalar problem by simply performing a mini-
mization operator on Equation 11 along the jth (j=1,2.) ele-
ment after completing the square. This is the coordinate-wise 
optimal solution for lqLS. More details about the lqLS problem 
may be seen in Marjanovic and Solo’s lq Cyclic Descent (lqCD) 
algorithm (Marjanovic and Solo, 2014).

The second sub-problem is a classical least-squares 
function, which can be solved by many mature methods. In 
this paper, we adopt Gauss-Newton method and parameter-
ize the rotation with a unit quaternion. As shown in Zheng 
et al.(2013a) and Zheng et al. (2013b), the unit quaternion 
is more powerful and less sensitive to initial guess. Using 
the unit quaternion to represent rotation will introduce an 
equality-constrained condition. Fortunately, this optimization 
problem can be easily transformed by a Lagrangian function.

Because our method is iterative, the final estimated pose 
(R̂,T̂) can be calculated by:
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where the superscript t denotes the iteration count until con-
vergence.

Experiments and Evaluation
In this section, we evaluate the proposed algorithm on both 
simulation data and real images. Our method (LqPnP in short) 
will be compared against state-of-the-art PnP solutions, includ-
ing Lu’s iterative method (LHM) (Lu et al., 2000), EPnP+GN 
(Lepetit et al., 2009), RPnP (Li et al., 2012), the new version 
of DLS (Hesch and Roumeliotis, 2011), OPnP (Zheng et al., 
2013b), ASPnP (Zheng et al., 2013), SDP (Schweighofer and 
Pinz, 2008), PPnP (Garro et al., 2012), EPPnP without outlier 
rejection stage, and REPPnP with outlier detection (Ferraz et 
al., 2014). The parameter q is set to 0.5. The implementa-
tions of all these ten methods are obtained from Ferraz’s PnP 
toolbox in Matlab. Our approach is also implemented based 
on Matlab, and the source code is made public (https://sites.
google.com/site/jiayuanli2016whu/home).

Simulations
A well-calibrated perspective camera capturing 2k*2k-pixel 
images with no principal point offset and a 1,500-pixel focal 
length is set in the simulation. We randomly generate n 3D 
points. For the ordinary configuration, the reference points 
are distributed in the box of [-8,8]×[-8,8]×[8,16] in the camera 
framework; while for the quasi-singular configuration, they 
are located in the box of [-8,8]×[-8,8]×[8,9] (near-planar case). 
Similar to OPnP (Zheng et al., 2013b), the ground-truth trans-
lation ttrue is set as the mean value of these 3D points, and the 
ground-truth rotation Rtrue is randomly generated. We obtain 
the three initial angles by adding a random value between 
[-10°, 10°] to the three angles of Rtrue and randomly generate 
the initial translation vector between [80%*ttrue, 120%*ttrue]. 
Two metric errors are used, as in (Ferraz et al. (2014) and 

Zheng et al. (2013b). The absolute rotation error in degrees 
between the estimated rotation R and the ground truth Rtrue 
is defined by Equation 18, and the relative translation error in 
percentage is defined by Equation 19.

	 e arcrot k k true k(deg) max { cos( ) / },= ⋅ ×=1
3 180r r π 	 (18)

	
etrans true(%) /= − ×t t t 100

	
(19)

where rk,true and rk represent the kth column of Rtrue and R, 
respectively.

The results reported in the following plots are all based on 
the average rotation and translation errors of 500 independent 
experiments.

Number of Points and Noise Levels
In this experiment, the n generated 3D-to-2D correspondences 
are assumed to be only corrupted by noise. We compare the 
accuracy of the above-mentioned methods when varying the 
number of point correspondences and noise levels. We first fix 
the Gaussian noise with deviation σ = 2 pixels and increase 
the correspondence numbers n from 4 to 22. Then, we vary 
the level of Gaussian noise from σ = 2 to 20 pixels and fix the 
number of correspondences n = 10. The average rotation and 
translation errors are reported in Figure 2.

We can learn that: (1) Half of these solutions become 
very inaccurate when the correspondence set is small (n≤8), 
such as in LHM, EPnP+GN, PPnP, EPPnP, and REPPnP. The 
reason may be that they use approximation techniques in 
their works, and LHM may converge to a local optimal. (2) 
EPnP+GN, RPnP, PPnP, EPPnP, and REPPnP are more sensitive 
to Gaussian noise than others. Again, most of them apply an 
approximation technique. (3) LHM, EPnP+GN (EPnP in the 
planar configuration), RPnP, SDP, and PPnP are sensitive to the 
point configurations. We can observe that PPnP is less stable 
in quasi-singular cases than in the ordinary configurations. 
SDP is excluded from comparison in planar cases because it 
cannot handle this configuration. The performance of LHM, 
EPnP, RPnP, and PPnP drop considerably when the 3D refer-
ence points are coplanar. Although the robust version of DLS 
achieves good results in these plots, its failure rate is very 
high (almost 25 percent) in planar cases. (4) OPnP and ASPnP 
achieve significantly better accuracy than the aforementioned 
solutions in all synthetic experiments. This may benefit from 
using quaternion to parameterize the rotation matrix. 

Nevertheless, our method LqPnP provides more impressive 
results than OPnP and ASPnP in most situations. For instance, 
for point number n=4 in the planar case of Figure 2, the 
rotation errors of OPnP and ASPnP reach up to 4.53 and 4.43 
degrees, and their translation errors reach up to 2.06 percent 
and 2.05 percent, respectively. In contrast, the rotation and 
translation errors of the proposed algorithm LqPnP are 0.38 
degrees and 0.41 percent, respectively. The reasons may be 
concluded as follows: our method LqPnP uses the sparse-
inducing norm, lq-norm, to formulate the cost function, which 
is more robust to noise and outliers. Furthermore, LqPnP is an 
iterative-based algorithm which usually has better accuracy.

Robustness to Outliers
The main advantage of LqPnP compared with state-of-the-art 
methods is that LqPnP can handle situations corrupted by 
outliers without any outlier detection stage.

In this experiment, we fix the number of inliers to 20 and 
vary the outlier rates from nout=5 percent to 95 percent. Thus, 
we generate n = 20/(1–nout) 3D-to-2D correspondences in ordi-
nary configuration and add the Gaussian noise with deviation 
δ=2 pixels. We randomly pick n–20 2D image projections and 
add errors that are randomly distributed in the range of [−300, 
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(a) Ordinary case
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(b) Quasi-singular case

Figure 2. Synthetic experimental results for ordinary, quasi-singular, and planar cases, varying the correspondence numbers 
(first row in Figure 2a, Figure 2b, and Figure 2c) and the levels of Gaussian noise (second row in Figure 2a, Figure 2b, and 
Figure 2c): (a) Ordinary case, (b) Quasi-singular case, and (c) Planar case. Continued on next page.
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300] pixels (the range is almost one-third of the image width). 
The results are shown in Figure 3.

Furthermore, we have compared the proposed solution 
LqPnP with REPPnP in terms of their sensibility to inlier num-
bers. We fix the outlier rate to 30 percent, increase the inlier 
number from 6 to 24, and add Gaussian noise with deviation 
δ=2 pixels. The average rotation and translation errors can be 
found in Figure 4.

We also compare LqPnP with some RANSAC-based 
multi-stage methods, i.e., RANSAC+P3P, RANSAC+P3P+ASPnP, 
RANSAC+P3P+OPnP, and RANSAC+RP4P+RPnP. In this ex-
periment, we set the inlier number to 20. Gaussian noise 
levels are set to 2 pixels, 5 pixels, 10 pixels, and 20 pixels, 

respectively. We increase the outlier rate from 5 percent to 95 
percent as in the above. Figure 5 plots the comparison results.

Figure 3 shows that only REPPnP and our LqPnP have the 
ability to distinguish inliers from outliers, while other nine 
methods all become very inaccurate when observations are 
corrupted by outliers. Our LqPnP achieves significantly better 
accuracy than REPPnP, especially for high outlier rates. Our 
LqPnP achieves accurate results (about 0.5 degrees for rota-
tion error and 0.5 percent for translation error) even when the 
outlier rate reaches 85 percent. 

Figure 4 shows that REPPnP is very sensitive to inlier num-
bers, while our LqPnP is robust. The performance of  REPPnP 
is seriously decreased when the inlier number is less than 16, 

4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40
Mean Rotation Error

Number of points

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40
Mean Translation Error

Number of points

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50
Mean Rotation Error

Gaussian Image Noise (pixels)

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50
Mean Translation Error

Gaussian Image Noise (pixels)

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

(c) Planar case

Figure 2 (continued). Synthetic experimental results for ordinary, quasi-singular, and planar cases, varying the correspon-
dence numbers (first row in Figure 2a, Figure 2b, and Figure 2c) and the levels of Gaussian noise (second row in Figure 2a, 
Figure 2b, and Figure 2c): (a) Ordinary case, (b) Quasi-singular case, and (c) Planar case.
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Figure 3. Experimental results with reference to increasing the levels of outlier rate.
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while the performance of our LqPnP drops only slightly when 
the inlier number is less than 8.

Figure 5 indicates that our LqPnP achieves comparable 
results with RANSAC+P3P (or P4P) +PnP methods when the 
Gaussian noise level is small (see in Figure 5a and 5b). How-
ever, RANSAC-based methods are very sensitive to noise (see in 
Figure 5c and 5d). In addition, when the outlier rate is higher 
than 75 percent, the performance of our LqPnP is definitely 
better than RANSAC-based methods.

Real Experiment
In this experiment, we choose two large-scale aerial images 
captured by SWDC aerial digital camera system in Pingding-
shan City, Henan, China. SWDC is composed of five digital 
cameras, i.e., one central camera and four oblique cameras. 
The first image (Figure 6a) is obtained by the central camera 
whose resolution is 5,406×7,160 pixels and focal length is 
12,102.1 pixels. The other one (Figure 6b) is captured by an 
oblique camera whose resolution is 7,160×5,406 pixels and 
focal length of 14,671.5 pixels. There are 12 and 15 control 
points measured by GPS-RTK in Figure 6a and Figure 6b, 
respectively. The initial rotation angles (φ, ω, κ in the table) 

and camera position vector ([Xs,Ys,Zs] in the table) needed 
by our LqPnP are set as in Table 1. The comparison results are 
reported in Table 2 and Table 3.

Table 1. The Setting of Initial Values

Images φ/degree ω/degree κ/degree Xs (m) Ys (m) Zs (m)

1 0 0 0 0 0 100
2 0 0 -30 0 0 100

As can be seen, only 3 of 12 methods (EPnP+GN, PATB, 
and LqPnP) can correctly estimate the camera pose. Our 
LqPnP achieves the best RMSE of reprojection error, i.e., 0.617 
and 0.678 pixels. The other nine methods converge to wrong 
solutions whose camera positions are under the ground. From 
Table 2 and Table 3, we can also infer that our LqPnP does 
not rely on good initial-guess if the observations have no 
gross errors. For example, the real pose of the second image is 
[17.964, -44.673, -117.563, 657.875, 162.093, 647.846]T, while 
the initial values are set to [0, 0, -30, 0, 0, 100]T.

We also perform an experiment with outliers. We ran-
domly add three outliers (outlier rates of image 1 and image 2 
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Figure 4. Comparison of LqPnP and REPPnP in terms of the sensibility to inlier numbers.
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(a) Gaussian image noise δ = 2 pixels. (c) Gaussian image noise δ = 10 pixels.
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(b) Gaussian image noise δ = 5 pixels. (d) Gaussian image noise δ = 20 pixels.

Figure 5. Performance comparison between LqPnP and RANSAC-based methods w.r.t. varying outlier rates.
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are 20 percent and 16.7 percent, respectively.) whose range is 
the maximum range of the all 3D-to-2D correspondences (the 
range of the image projections is almost as large as the image 
size). The average RMSEs (reprojection error) of 100 indepen-
dent tests of our LqPnP are 1.292 and 1.571 pixels, respec-
tively, while other methods are all failed.

Parameter Study
In the proposed method, parameter q is very important. To 
quantify the sensitivity of the proposed method to parameter 

q, we have performed several studies whose results are 
reported in Figure 7. The configurations of these experiments 
are the same as the ordinary case in the Simulations section. 

As can be seen, parameter q is not sensitive to the number 
of points and Gaussian noise levels (Figure 7a and Figure 7b). 
The performances are similar when varying the parameter q 
from 0.1 to 0.9. In contrast, parameter q is very sensitive to 
outliers. The best performances are achieved when q is set to 
be 0.5 and 0.6 (Figure 7c). Either small values or large values 
of q will decrease the accuracy and stability of the proposed 

(a) (b)

Figure 6. The aerial images used in this experiment. The red circles in the images are control points measured by GPS-RTK. 
(Figure 6a has been rotated for better visualization): (a) Image 1: captured by central camera of SWDC, and (b) Image 2: cap-
tured by an oblique camera of SWDC.

Table 2. The Experimental Results of the First Image

Methods φ/degree ω/degree κ/degree Xs (m) Ys (m) Zs (m) RMSE(pixels) True/False

LHM -11.980 5.955 -20.396 -154.344 -39.414 -631.589 44.205 False

EPnP+GN -3.4360 0.987 -19.807 19.2890 37.5730 650.269 1.991 True

RPnP -16.676 3.508 -19.820 -205.987 -10.504 -617.843 46.092 False

DLS -13.530 5.674 -20.374 -171.509 -35.707 -627.129 43.659 False

OPnP -13.936 5.636 -20.350 -176.032 -35.127 -626.105 43.623 False

ASPnP -12.845 6.530 -20.679 -164.067 -45.641 -628.751 44.271 False

SDP -13.880 5.539 -20.329 -175.342 -34.055 -626.055 43.644 False

PPnP -13.881 5.539 -20.329 -175.348 -34.050 -626.053 43.644 False

EPPnP -11.291 6.036 -19.331 -148.154 -40.922 -640.069 62.728 False

REPPnP -11.291 6.036 -19.331 -148.154 -40.922 -640.069 62.728 False

LqPnP -3.2230 0.582 -19.785 16.864 32.822 650.592 0.617 True

PATB -3.2100 0.545 -19.802 16.740 32.820 650.599 1.051 True
Note that PATB is a commercial software for bundle adjustment.

Table 3. The Experimental Results of the Second Image

Methods φ/degree ω/degree κ/degree Xs (m) Ys (m) Zs (m) RMSE(pixels) True/False

LHM -19.033 41.645 63.137 -154.344 -39.414 -631.589 256.238 False

EPnP+GN 17.927 -44.755 -117.56 658.171 161.18 646.314 2.546 True

RPnP -19.246 41.624 63.062 627.541 190.293 -684.325 256.902 False

DLS -19.537 43.031 62.86 640.381 186.995 -663.044 257.031 False

OPnP -19.716 42.911 62.702 647.656 192.066 -672.89 256.515 False

ASPnP -19.400 42.880 62.312 639.621 186.035 -665.693 256.566 False

SDP -20.3985 44.0064 62.27 646.752 191.336 -643.662 259.937 False

PPnP -20.399 44.007 62.27 646.752 191.336 -643.66 259.937 False

EPPnP 5.433 3.832 59.196 49.547 -101.967 -705.835 1585.296 False

REPPnP 5.433 3.832 59.196 49.547 -101.967 -705.835 1585.296 False

LqPnP 17.964 -44.673 -117.563 657.875 162.093 647.846 0.678 True

PATB 17.99 -44.699 -117.577 657.718 162.188 646.999 1.192 True
Note that PATB is a commercial software for bundle adjustment.
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algorithm. This is the reason why q is set to be 0.5 in all our 
performance evaluation experiments.

Limitations
As mentioned in the above, the proposed method is iteration-
based and an initial guess is needed. In other words, our LqPnP 
method has two drawbacks: (1) the convergence of LqPnP 
depends on the initial guess to some extent. Although we use 
unit quaternion to represent the rotation, LqPnP may fail when 
the initial guess is far from the ground truth. (2) our LqPnP is 
not suitable for real-time applications. It is more time-consum-
ing than non-iterative ones. Fortunately, a good initial guess 
can be easily obtained by a set of non-iterative methods or by 
a position and orientation system (POS). Our LqPnP with good 
initial guess will converge within a few iterations.

Conclusions
In this paper, we proposed a new robust perspective-n-point 
solution for pose estimation problem. Our work recovers the 
orientation and position of a camera from observations cor-
rupted by outliers without any outlier detection stage such 
as RANSAC. We use the lq-norm metric to formulate the cost 
function and solve this function by adopting the augmented 
Lagrangian function and ADMM method. Extensive experimen-
tal evaluations on both synthetic and real data show that the 
proposed approach significantly outperforms the state-of-the-
art methods.

Our LqPnP is more robust to noise and outliers than cur-
rent state-of-the-art methods. (1) Current non-iterative PnP ap-
proaches are usually designed for small scale computer vision 
tasks. For large scale remote sensing images, these approaches 
usually become unreliable and converge to a wrong solution. 
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(a) Number of points.

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

Gaussian Image Noise (pixels)

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

Mean Rotation Error

 

 

q=0.1
q=0.2
q=0.3
q=0.4
q=0.5
q=0.6
q=0.7
q=0.8
q=0.9

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2
Mean Translation Error

Gaussian Image Noise (pixels)

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

(b) Gaussian noise levels.

5 15 25 35 45 55 65 75 85 95
0

1

2

3

4

5
Mean Rotation Error

% of outliers

R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

 

 

q=0.1
q=0.2
q=0.3
q=0.4
q=0.5
q=0.6
q=0.7
q=0.8
q=0.9

5 15 25 35 45 55 65 75 85 95
0

1

2

3

4

5
Mean Translation Error

% of outliers

T
ra

ns
la

tio
n 

E
rr

or
 (

%
)

(c) Outlier levels (Gaussian image noise δ= 2 pixels).

Figure 7. Results of parameter study: (a) Number of points, (b) Gaussian noise levels, and (c) Outlier levels (Gaussian image 
noise δ=2 pixels).
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In contrast, the proposed method is suitable for both comput-
er vision and photogrammetry applications. (2) The proposed 
method handles different point configurations, i.e., ordinary 
case, quasi- singular case and planar case, in a uniform frame-
work. (3) The most important advantage of our method is that 
it removes outliers and recovers the camera pose in a single 
step. In contrast, RANSAC-based strategy usually rejects outli-
ers during a preprocessing stage before the PnP methods are 
applied. In addition, RANSAC-based methods are less reliable 
and accurate than our method if the outlier rate is high or the 
noise level is serious.

The main limitation of LqPnP is the need of initial guess. 
Fortunately, the initial guess can be provided by POS or non-
iterative methods. Our future studies will involve integrating 
LqPnP into bundle adjustment or structure-from-motion for 
accurate 3D reconstruction and DEM production.
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