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A B S T R A C T

Point Cloud Registration (PCR) is a fundamental and important issue in photogrammetry and computer vision.
Its goal is to find rigid transformations that register multiple 3D point sets. This paper proposes a robust and
efficient PCR method based on topological graph and Cauchy weighted lq-norm. Our method does not require
initializations and is highly robust to outliers and partial overlaps. It contains two major steps: (1) correspon-
dence-based coarse registration, which is called Weighted lq Coarse Registration (WCR). In the WlqCR method,
we represent feature point sets as topological graphs and transform the point matching problem to an edge
matching problem. We build a mathematical model for edge correspondence maximization. We also present an
edge voting strategy to distinguish potential correct matches from mismatches. Then, we define a concept called
edge vector, which has a property that it is invariant to translations. Based on this property, six Degrees of
Freedoms (DoF) PCR problem can be simplified into two three DoF subproblems, i.e., rotation estimation and
translation estimation. (2) fine registration based on Weighted lq Iterative Closest Point (WlqICP). We propose a
new ICP method called WlqICP, which is much more robust to partial overlaps compared with traditional ICP. In
both rotation estimation and WlqICP, we use a new Cauchy weighted lq-norm < <q(0 1) instead of l2-norm for
object function construction, which has a high degree of robustness. Extensive experiments on both simulated
and real data demonstrate the power of the proposed method, i.e., our method is more robust (is able to tolerate
up to 99% of outliers) and much faster than compared state-of-the-art methods (WlqCR is almost two orders of
magnitude faster than RANdom SAmple Consesus (RANSAC) and its variants under 95% of outliers). The source
code will be made publicly available in http://www.escience.cn/people/lijiayuan/index.html.

1. Introduction

Point Cloud Registration (PCR) is a fundamental and important
issue in photogrammetry, robotics, and computer vision, which has a
variety of applications such as Simultaneous Localization and Mapping
(SLAM) (Nüchter et al., 2007), 3D modelling (Blais and Levine, 1995;
Choi et al., 2015, 2016b), cultural heritage management (Montuori
et al., 2014), and landslide monitoring (Ventura et al., 2011), to name a
few. Three dimensional laser scanning becomes more and more popular
in contemporary surveying and mapping. However, each 3D scan only
covers a part of an object scene due to occlusions, it is necessary to
capture multiple 3D scans from different viewpoints so that the whole
scene can be fully covered. The goal of PCR is to register multiple in-
dividual 3D scans with their own coordinate systems into a common
reference system, which is usually achieved by sequential pairwise

registration.
It is not arguable that Iterative Closest Point (ICP) (Besl and McKay,

1992) algorithm is the de facto standard for the PCR problem, which
has been applied in many industrial solutions, such as the on-board
software of Zoller + Frohlich1 scanners and the offline processing
software of RIEGL2 scanners. The basic idea of ICP is to alternate be-
tween closest point matching and rigid transformation estimation.
However, ICP suffers from a drawback that it requires sufficiently good
initial parameters for accurate registration, since ICP finds only a local
minimum.

To address this issue, many solutions use external sensors to provide
additional information. For example, a RIEGL airborne laser scanner is
equipped with a GNSS/INS (Global Navigation Satellite System/Inertial
Navigation System) sensor system; point clouds captured by terrestrial
laser scanners (for instance, RIEGL VZ400 scanner) usually rely on
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artificial markers for coarse registration; VLOAM (visual-LiDAR odo-
metry and mapping) (Zhang and Singh, 2015) uses a panoramic camera
and a low-cost MEMS Inertial Measurement Unit (IMU) for Visual-In-
ertial Odometry (VIO), which enables PCR in GNSS-denied environ-
ments. However, GNSS/INS sensors are expensive; artificial marker
layout is labor-intensive; methods like VLOAM highly rely on the VIO
algorithm.

More well-designed PCR techniques have been proposed to alleviate
the dependence on good initializations. These methods usually adapt a
coarse-to-fine strategy. First, an initial transformation is obtained by a
coarse registration method such as 4-Points Congruent Sets (4PCS)
(Aiger et al., 2008), Keypoint-based 4PCS (K4PCS) (Theiler et al.,
2014), and Hierarchical Merging based Multiview Registration
(HMMR) (Dong et al., 2018), etc. Then, a fine registration approach
(e.g., ICP-family) is applied to further refine the initial transformation.
Coarse-to-fine technique is very practical in realistic applications.
However, 4PCS and K4PCS are sensitive to the proportion of over-
lapping regions; feature correspondence based coarse registration
methods may fail if outlier rates are extremely high. In addition, current
ICP-type fine registration methods are not robust enough, which are
also sensitive to the proportion of overlapping points.

In this paper, we aim to design a coarse-to-fine registration method
that: (1) does not require initialization; (2) has polynomial running
time with respect to number of points; (3) is able to deal with cases with
extremely high outlier rates (e.g., cases with 99% of outliers).
Correspondence-based coarse registration is widely used in practice.
However, 3D feature matching is much less accurate compared to its 2D
counterparts. As pointed out by (Bustos and Chin, 2017), it is very
common to have more than 95% of outliers in initial feature matches.
(4) is insensitive to the proportion of overlapping points. To our best
knowledge, there is rarely literature that simultaneously addresses all
these issues. For instance, ICP requires initialization; Globally Optimal
ICP (Go-ICP) (Yang et al., 2015) has exponential running time with
respect to number of points; Fast Global Registration (FGR) (Zhou et al.,
2016) cannot tolerate extremely high outlier rates; Gaussian Mixture
Models (GMMs) (Jian and Vemuri, 2010) is sensitive to the proportion
of overlapping points. More specifically, we propose an accurate, ro-
bust, and efficient PCR method based on topological graph and Cauchy-
weighted lq-norm cost. It contains two major steps: (1) coarse regis-
tration. In this stage, we use topological graphs to represent feature
point sets and transform the point matching problem to an edge
matching problem. Mismatches can be easily distinguished from po-
tential correct matches since edge correspondences hold an equal-
length constraint. Then, we define a concept called edge vector, which
has a property that it is invariant to translations. We simplify the six
Degree of Freedoms (DoF) PCR problem into two three DoF sub-
problems, i.e., rotation estimation and translation estimation, based on
edge vector. (2) fine registration. We propose a new ICP variant called
Weighted lq ICP (WlqICP), which is much more robust to partial over-
laps compared with current ICP and its variants. In both rotation esti-
mation and WlqICP, we use a new Cauchy-weighted lq-norm < <q(0 1)
for object function construction, which is very robust. The proposed
method is validated on both simulated and real datasets. Extensive
experimental results show that our method can tolerate more than 99%
of outliers, which outperforms the compared state-of-the-arts. The main
contributions of this paper are as follows:

• We propose a new Cauchy-weighted lq-norm < <q(0 1) cost.
Compared with traditional l2-norm cost, the new cost has a high
degree of robustness. We use the Augmented Lagrange Function
(ALF) and Alternating Direction Method of Multipliers (ADMM)
(Boyd et al., 2011) to solve this non-smooth and non-convex object
function.
• We transform the point matching problem to an edge matching
problem based on topological graph representation. We build a
mathematical model for edge correspondence maximization. We

then present an edge voting strategy. These strategies can largely
improve the inlier rate of initial feature correspondences. Hence, the
proposed Weighted lq Coarse Registration (WlqCR) method can tol-
erate extremely high outlier rates.
• We decompose the six DoF PCR problem into two three DoF sub-
problems based on edge vector, which largely reduces the parameter
space. We also propose a robust rotation estimation algorithm based
on weighted lq-norm.
• We develop a fine registration algorithm called WlqICP based on our
new cost.

2. Related work

In this section, we will review both coarse registration methods and
fine registration methods since the proposed method builds on the
coarse-to-fine strategy.

2.1. Coarse registration

As summarized in literature (Dong et al., 2018), a large number of
coarse registration methods are based on geometric features (e.g.,
points, lines, planes, or semantic features). For urban man-made scenes,
line and plane features are usually adopted. For example, Stamos and
Leordean (2003) presented a line registration method, which used
plane-intersection-line correspondences to calculate the transformation
parameters. Raposo et al. (2013) developed a plane-based odometry
method for indoor mapping, which used plane features as primitives for
motion estimation. Similarly, Xiao et al. (2013) proposed a plane-to-
plane registration algorithm, which first segmented point clouds into
plane primitives, then performed an ICP-like method for transformation
estimation. Rabbani et al. (2007) utilized multiple geometric primitives
(e.g., planes, cylindrical and spherical surfaces, tori) to register scans
captured in industrial environments. Yang et al. (2016) utilized both
semantic information and geometrical constraints to match line features
derived from pole-like objects and vertical planes. Although these high-
level features are very suitable for urban scenes, they work poor in
natural scenes such as forest and mountain.

Point feature-based methods have no dependence on scenes and are
more popular in realistic applications. These methods typically consist
of two major stages, i.e., feature matching and robust transformation
estimation. In the first stage, keypoints are first extracted from raw
point clouds based on feature detectors. (For example, Local Surface
Patches (LSP) (Chen and Bhanu, 2007) detects features with large shape
variations measured by shape index. KeyPoint Quality (KPQ) (Mian
et al., 2010) and Intrinsic Shape Signatures (ISS) (Zhong, 2009) use
eigenvalues of the support region scatter matrix to measure the dis-
tinctiveness of points. ISS accepts points whose ratio between two
successive eigenvalues is below a given threshold. KPQ uses the ratio
between the maximum lengths along the first two principal axes to
reject nondistinctive points. MeshDoG (Zaharescu et al., 2009) builds
the scale-space on the 3D mesh and applies the Difference-of-Gaussians
(DoG) operator to detect features. KeypointNet (Suwajanakorn et al.,
2018) presents an end-to-end framework to learn geometrically and
semantically consistent keypoints.) Then, each keypoint is described by
local feature descriptors, which encode spatial geometric information of
a local patch to a compact feature vector so that keypoints can be
distinguished from each other. (e.g., spin-image (Johnson and Hebert,
1999) is a data level shape descriptor, which computes 2D histograms
of points falling in a cylindrical volume. 3D Shape Context (3DSC)
(Frome et al., 2004) describes a feature point based on the 3D histo-
grams of support points. Fast Point Feature Histogram (FPFH) (Rusu
et al., 2009) accumulates in a 3D histogram of the three angles between
points. Rotational Projection Statistics (RoPS) (Guo et al., 2013) pro-
jects points within the support region onto 2D planes and computes
their statistical distributions. Signature of Histogram of OrienTations
(SHOT) (Salti et al., 2014) introduces a unique and unambiguous local
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reference frame based on eigenvalue decomposition. 3DMatch (Zeng
et al., 2017), PPFNet (Deng et al., 2018), and 3DSmoothNet (Gojcic
et al., 2019) are learned 3D descriptors. 3DMatch learns a local volu-
metric descriptor based on truncated signed distance field coding;
PPFNet presents a N-tuple loss to inject global context into the local
descriptor; 3DSmoothNet presents a voxelized smoothed density value
representation and develops a Siamese architecture.) Finally, corre-
sponding relationship between two sets of features is established based
on feature vector distances and various matching strategies (e.g.,
nearest neighbor distance ratio (Lowe, 2004) and chi-square test
(Zhong, 2009)). In the second stage, a hypothesize-and-verify technique
such as RANdom SAmple Consesus (RANSAC) (Fischler and Bolles,
1981) and its variants (e.g., Maximum Likelihood Estimation SAmple
Consensus (MLESAC) (Torr and Zisserman, 2000) is a probability-based
variant, which maximizes the likelihood instead of the consensus size.
BaySAC (Botterill et al., 2009) uses a deterministic strategy that selects
the hypothesis set with the highest inlier probability to reduce the
number of trails. Optimized BaySAC (Kang et al., 2013) proposes a
novel statistical test to estimate the prior probability, which is pre-
dictably model-free. Fixed Locally Optimized RANSAC (FLO-RANSAC)
(Lebeda et al., 2012) adds a local optimization stage into RANSAC to
improve the model accuracy. Universal RANSAC (USAC) (Raguram
et al., 2012) incorporates several important practical and computa-
tional tricks into a common framework. Normalized Barycentric Co-
ordinate System (NBCS) (Li et al., 2017a) adapts a new coordinate
system into a hypothesize-and-verify framework.), a robust optimiza-
tion algorithm (e.g., FGR (Zhou et al., 2016) introduces a scaled
Geman-McClure loss and uses the Black and Rangarajan duality be-
tween robust estimation and line processes. Lq estimator (Li et al.,
2016a) uses a sparse-inducing norm for robust estimation. Yang and
Carlone (Yang and Carlone, 2019) proposed a robust cost based on
Truncated Least Squares (TLS). Iterative biconvex optimization (Cai
et al., 2018) conducts a deterministic search to refine a given initial
solution.), or a filtering method (e.g., guaranteed outlier removal
(Bustos and Chin, 2017) uses mixed integer linear programming to
remove provably true outliers.) is applied to simultaneously remove
outliers and estimate a rigid transformation.

Apart from 3D feature-based methods, 2D features can also be used
for the PCR problem. Laser scanners can not only measure distance, but
also get the amount of light returning to the scanners. The reflectance
information can be projected to 2D gray scale images. First, 2D features
are detected and matched from the intensity images; then, these fea-
tures are projected into 3D space to obtain 3D-to-2D or 3D-to-3D cor-
respondences; finally, a robust transformation estimation algorithm is
performed to register these correspondences. For example, Böhm and
Becker (2007) used Scale-Invariant Feature Transform (SIFT) (Lowe,
2004) to match features and applied RANSAC for transformation esti-
mation. Barnea and Filin (2008) used the 3D Euclidean distance be-
tween keypoint-pairs as match entities. Kang et al. (2009) projected
image feature matches to obtain 3D-to-3D correspondences and used a
four-point rigid geometric invariance to remove false matches. Simi-
larly, Weinmann et al. (2011) projected SIFT features inside one image
to 3D space and obtained a set of 3D-to-2D correspondences. With the
rapid progress of feature matching technology, many image feature
matching methods can be applied for such a task (e.g., Speeded Up
Robust Features (SURF) (Bay et al., 2008), Radiation-variation In-
sensitive Feature Transform (RIFT) (Li et al., 2018), locality affine-in-
variant matching (Li et al., 2017b, 2019)). A comprehensive study can
be found in literature (Houshiar et al., 2015). However, these methods
highly rely on the quality of the projected intensity images. If the
density of point clouds is very sparse such as scans captured by Velo-
dyne LiDARs, these methods may not work.

There exist other point-based methods that do not follow the
aforementioned framework. Among them, 4PCS (Aiger et al., 2008) is a
representative work, which extracts coplanar 4-point correspondence
sets based on affine-invariant intersection ratios and performs

registration in a hypothesize-and-verify framework. 4PCS has many
variants. Super 4PCS (S4PCS) (Mellado et al., 2014) introduces a smart
indexing data organization to largely reduce the computational com-
plexity of 4PCS. K4PCS (Theiler et al., 2014) uses the extracted 3D
keypoints as the input. Geodesic Distances-based 4PCS (GD-4PCS) (Ge,
2016) extends 4PCS to cope with non-rigid isometric deformations
based on geodesic distance. Similar to K4PCS, Semantic-Keypoint-based
4PCS (SK4PCS) (Ge, 2017) extracts semantic keypoints as inputs to a
modified 4PCS. Owing to the affine-invariant geometric constraint,
these approaches are more robust to noise and uneven point densities.
However, they are generally much slower than feature-based methods.

As known, point cloud feature matching is less accurate compared
with image feature matching, since point clouds are unorganized and
suffer from serious noise, uneven point densities, and texture-less. As a
result, feature correspondences matched by local descriptors contain a
large number of outliers. Although feature-based methods perform well
in most cases, they may fail in some cases with extremely high outlier
rates, e.g., cases with 99% of outliers. The reason is that the robust
transformation estimation stage cannot tolerate high outlier rates. For
example, RANSAC-type methods require a huge number of trails to get
an acceptable solution if the outlier rate is higher than 90% (Raguram
et al., 2012; Chin and Suter, 2017), which largely decreases their effi-
ciency; M-estimators suffer from a breakdown point of 50% (Rousseeuw
and Leroy, 2005).

2.2. Fine registration

Fine registration methods can be roughly categorized into two
groups, i.e., local optimal methods and global optimal methods (Yang
et al., 2015). Although global optimal methods provide accurate esti-
mations and do not require initializations, their very high computa-
tional complexities prevent their usage in realistic applications (Cai
et al., 2019). Hence, we focus on local optimal methods in this section,
such as ICP-family and probabilistic-based methods.

ICP and its variants: ICP (Besl and McKay, 1992) algorithm can be
regarded as a milestone in PCR. As aforementioned, it is a simultaneous
correspondence establishment and pose estimation technique. ICP has a
number of variants. According to literature (Rusinkiewicz and Levoy,
2001), they can be roughly classified as affecting one of the three
subtasks: sampling and matching, error metric, and outlier rejection.
(1) sampling and matching. Using subset points instead of the whole
point clouds for registration can largely reduce the computational
complexity. Some typical strategies include uniform sampling (Turk
and Levoy, 1994), random sampling (Masuda et al., 1996), Voxel Grid
filtering (Rusu and Cousins, 2011), and octree compression (Schnabel
and Klein, 2006). ICP establishes matches based on Euclidean distance
nearest neighbor search. Many variants use additional properties or
strategies to aid correspondence establishment (e.g., invariant features
(Feldmar and Ayache, 1996), surface normal (Serafin and Grisetti,
2015), and Mahalanobis distance (Hansen et al., 2007)). To improve
the robustness to partial overlaps, practical ICP-family implementations
use a maximum distance threshold to prune the correspondences. (2)
error metrics. To improve registration accuracy of the original ICP,
many other error metrics are proposed to instead of the point-to-point
error distance, such as point-to-line metric in Point-Line ICP (PLICP)
(Censi, 2008), point-to-plane metric in (Chen and Medioni, 1992), and
plane-to-plane metric in Generalized-ICP (GICP) (Segal et al., 2009). (3)
outlier rejection. To cope with this issue, various strategies are used to
improve convergence. M-estimators are straightforward, which give
large weights to inliers while small weights to outliers (Bergström and
Edlund, 2014; Kaneko et al., 2003). Trimmed ICP (TrICP) (Chetverikov
et al., 2005) and Anisotropic ICP (A-ICP) (Maier-Hein et al., 2011) use a
Least Trimmed Squares (LTS) algorithm for transformation estimation,
which only consider a certain number of points with small residuals.
However, both M-estimators and LTS have a breakdown point of 0.5,
namely, if the overlap between two point clouds is less than 50%, these
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methods may not work. Sparse ICP (Bouaziz et al., 2013) uses a sparse
cost function instead of the least squares cost. Recently, Yang et al.
(Yang et al., 2015) proposed a Go-ICP based on a Branch-and-Bound
(BnB) scheme. However, Go-ICP shares the same limitation with global
optimal methods. A review of ICP variants can be found in Pomerleau
et al. (2013).

Probabilistic-based methods: Normal Distributions Transform
(NDT) (Biber and Straßer, 2003) models the distribution of a point set
as a density function, which is originally proposed to match 2D laser
scans. It first transforms a discrete 2D point set into a piecewise con-
tinuous probability density represented by a set of normal distributions.
Then, scan matching is defined by maximizing the sum, that the points
in another scan score on this density. Takeuchi and Tsubouchi
(Takeuchi and Tsubouchi, 2006) extended NDT to 3D. Many extensions
have been proposed to improve the calculation of the probability
density, such as Segmented Region Growing NDT (SRG-NDT) (Das and
Waslander, 2014) and compact 3D-NDT (Stoyanov et al., 2012). GMMs
registration (Jian and Vemuri, 2010) uses Gaussian mixture models to
represent point clouds and reformulates PCR problem as two Gaussian
mixtures alignment problem such that the Kullback-Leibler divergence
between these two mixtures is minimized. GMMs-based methods gen-
erally employ correlation-based algorithms (e.g., GMMs registration
(Jian and Vemuri, 2010) and kernel correlation registration (Tsin and
Kanade, 2004)) or Expectation-Maximization (EM) based algorithms
(e.g., Coherent Point Drift (CPD) (Myronenko and Song, 2010)) for
alignment. As shown in the above-mentioned work, probabilistic-based
methods are less sensitive to poor initializations than ICP-family.
However, the results of probabilistic-based methods are not as pre-
dictable as ICP (Magnusson et al., 2009).

More recently, Cai et al. (2019) proposed a practical optimal
method for registration of terrestrial LiDAR scans, which reduces the six
DoF PCR problem to a four DoF registration problem based on a highly
accurate level compensator. Although this method is fast and accurate,
it does not work on other LiDARs that are not equipped with level
compensators, such as hand-hold LiDARs, Velodyne LiDARs, and air-
borne LiDARs.

This paper is organized as follows: Section 3 proposes a corre-
spondence-based coarse registration algorithm (WlqCR) and develops a
fine registration algorithm based on the proposed cost, called WlqICP.
Section 4 evaluates the proposed method on both simulated and real
data. Finally, a conclusion and discussion section is presented in Section
5.

3. Methodology

This section proposes a robust and efficient PCR method based on
topological graph and Cauchy weighted lq-norm. It is a coarse-to-fine
method, which consists of two major stages, i.e., a correspondence-
based coarse registration stage (WlqCR) and an ICP-like fine registration
stage (WlqICP).

3.1. Coarse registration based on WlqCR

Given a pair of point clouds ( , )1 2 , we extract a 3D correspon-
dence set = = …p q p q i n{( , ) ; ; 1, 2, , }i i i i based on feature
detectors and descriptors, where p q,i i

3. Note that a correspon-
dence can be also called a match, which is a matching pair. Generally, a
correspondence set contains both correct matches (inliers) and false
matches (outliers). The goal of point set registration is to estimate an
optimal rigid transformation T SE (3) that maximizes the number of
correct matches in . The object function is,

<
=

p qTargmax ( , ( ))
T SE i

n

i i
(3) 1 (1)

where transformation T is formed by a 3D rotation matrix R and a 3D

translation vector t ; hence, point qi is transformed to = +q Rq ti i after
applying T; is a correct match threshold; and is an operator that
returns 1 if the input predicate is satisfied and 0 otherwise. is a cost
function that measures the similarity between pi and qT ( )i . The most
popular cost function is to minimize the sum of l2-norm distance be-
tween the correspondences.

Optimizing this object function faces three major problems: first, 3D
correspondence set matched by feature descriptors such as FPFH
(Rusu et al., 2009) usually contains a large number of outliers. The
outlier rate may be higher than 90% due to the differences between
point clouds. Such high outlier rates make the optimization very chal-
lenging. Second, the rigid transformation T has six DoF. To find an
optimal solution of Eq. (1) in a six-dimensional parameter space is
difficult. Third, l2-norm relies on an assumption that observations are
free of outliers. Therefore, it is not a robust estimator and is sensitive to
outliers, whose solution will be skewed to adjust the residuals. A sui-
table robust cost function is also very important. To deal with these
problems, we first present an edge voting strategy based on topological
graphs to improve the inlier rate of ; then, we decompose the six DoF
rigid transformation estimation problem into two subproblems (a three
DoF rotation problem and a three DoF translation problem) based on
graph edge vectors; finally, we introduce a Cauchy weighted lq-norm
cost function instead of l2-norm for such a task, which has a high degree
of robustness.

3.1.1. Topological graph and edge voting
Suppose we have extracted a 3D correspondence set from the

point cloud pair ( , )1 2 . We first construct two attributed graphs
G V E( , ) and G V E( , ) based on the feature correspondence set

, whereV (V ) is a set of nodes and E (E ) is a set of edges. Here,
the graph G (G ) is a topological model of point set ( ). The nodes
v{ }i

n
1 ( v{ }i

n
1 ) represent point features p{ }i

n
1 ( q{ }i n

1 ) and edges represent
pairwise linkages between features (see Fig. 1(a)). Owing to the cor-
responding relationship between point sets and ,

v V v V{( , )}i i
n
1 is a node correspondence set. It is obviously that

if both node correspondences v v( , )i i and v v( , )j j are correct matches,
their edge pair × + × +e E e E( , )i n j i n j( 1) ( 1) (or can be written as
e E e E( , )i j i j( , ) ( , ) ) is also a correct match. To make the mathe-
matical deduction simple, we first assume that the correct matches in
correspondence set are free of noise. Namely, if v v( , )i i is a correct
match, i.e., p q( , )i i is correct, we have = +p Rq ti i . Hence, if e i j( , ) and
e i j( , ) is a correct match, their lengths should be equal, i.e.,

=e ei j i j( , ) ( , ) , where e i j( , ) represents the length of e i j( , ) . If the re-
lationship =e ei j i j( , ) ( , ) is not hold, there must be at least one false
match in v v( , )i i and v v( , )j j .

In the above, we assume that there is no noise in the correct mat-
ches. This is not true. Correct matches inevitably suffer from noise in
real data. If a correspondence node v v( , )i i satisfies <p qT ( )i i 2
(Essentially, a node is equivalent to a feature point), it can be regarded
as a correct match. Thus, the equal length constraint is generally not
hold. Fortunately, if both v v( , )i i and v v( , )j j are correct matches, the

Fig. 1. Point set represented by a topological graph. (a) a complete topological
graph, where all points are the nodes of the graph. (b) a compact topological
graph after removing potential unreliable edges.

J. Li, et al. ISPRS Journal of Photogrammetry and Remote Sensing 160 (2020) 244–259

247



length difference between e i j( , ) and e i j( , ) should be small. Based on
this observation, we can approximately transform the point matching
problem to an edge matching problem, which can be formulated as,

= +

I E E

e e N K

argmin ; , ,

argmin ( )

I
E

I i I
i i

2

E

E E (2)

where I E E( ; , , )E is an object cost function; is a balance para-
meter; N is the size of the edge correspondence set; K is the number of
inliers; and IE is a set of indices of inlier edges. In this cost,

e e( )i I i i
2

E
is a data term, which penalizes edge corre-

spondences with large length differences; the term N K( ) minimizes
the number of outliers; and parameter balances these two terms.
Extending Eq. (2) to the whole edge correspondence set, we have,

= +

=

= =

=

b E E

b e e N b
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where =b b{ }i N
1 b( {0, 1})i is an ×N 1 binary vector that assigns a flag

for each edge correspondence. Specifically, for a correct edge match, its
flag =b 1i ; otherwise, =b 0i . If >e e( )i i

2 , it leads to positive
cost, which should be penalized; otherwise, if e e( )i i

2 , it
leads to a non-positive cost, which decreases the total cost and can be
regarded as an inlier. Thus, the optimal solution b can be simply ob-
tained by,

=
>

= …b
e e
e e

i N
1 ( )
0 ( ) ,

1, 2, ,i
i i

i i

2

2
(4)

and the inlier edge set is obtained simultaneously,

= = = …I i b i N{ 1, 1, 2, , }E i (5)

After obtaining IE , we can go back to the point matching problem.
As mentioned earlier, if both nodes v v( , )i i and v v( , )j j of an edge
correspondence e e( , )i j i j( , ) ( , ) are correct matches, the edge correspon-
dence is also a correct one. In other words, if e e( , )i j i j( , ) ( , ) is a correct
edge match, v v( , )i i and v v( , )j j may be correct matches. Hence, we
think that e e( , )i j i j( , ) ( , ) is a support edge pair and votes for v v( , )i i and
v v( , )j j , which is called edge voting strategy. Obviously, the higher the
number of votes ni

v of a node correspondence v v( , )i i , the better the
robustness of v v( , )i i is. Fig. 2 gives an example. As shown, v v( , )i i

and =v v{( , )}j j j 1
4 are node correspondences, where nodes v v( , )i i and

=v v{( , )}j j j 1
3 are correct matches while node v v( , )4 4 is a false one.

=e e{( , )}i j i j j( , ) ( , ) 1
4 are the support edge pairs of v v( , )i i . The lengths of

these edge pairs are equal, i.e., = =e e{ }i j i j j( , ) ( , ) 1
4 (For simplicity, we

assume that there is no noise in the correct matches). Thus, the vote
number ni

v of v v( , )i i is 4. Similarly, node v v( , )4 4 also has four sup-
port edge pairs, but only the pair =e e{( , )}i j i j j( , ) ( , ) 4 has the same length,
namely, the vote number n v

4 of node v v( , )4 4 is 1. Therefore, we can
infer that correspondence v v( , )i i is more reliable than correspondence
v v( , )4 4 .

We first build a more compact graph G V E( , ) based on IE .
Specifically, graph G only preserves the correct edges of E and re-
moves false edges and isolated nodes (after removing false edges, some
nodes have no connected edges) (see Fig. 1(b)). Then, we calculate the
vote number ni

v for each node v Vi and sort the nodes V in des-
cending order based on the votes. We regard the first k node corre-
spondences as potential reliable matches. Number k is determined by,

> = …
= =

k n n k nmin / , 1, 2, ,
i

k

i
v

i

n

i
v

1 1 (6)

where n is the size of node set < <V ;0 1 is a ratio threshold. Finally,
we rebuild the graphs G V E( , ) and G V E( , ) based on the k
potential feature matches. If these potential feature matches are all
correct matches, we can easily obtain the registration transformation
via least-squares optimization. However, this may not be true. Length of
an edge is a scalar feature and is not very robust. Hence, in some cases,
false correspondences may also satisfy the equal length constraint. For
example, in Fig. 2, correspondences v v( , )i i and v v( , )4 4 satisfy the
equal length constraint, while v v( , )4 4 is a false match. Although edge
voting stage can largely improve the robustness of the equal length
constraint, it still preserves a portion of outliers. Edge voting stage can
improve the inlier rate of initial matches, which is the basis for sub-
sequent steps, i.e., transformation decomposition and transformation
estimation.

3.1.2. Edge vector and transformation decomposition
For each edge e j i( )i j( , ) , we can define an edge vector as

= =e p pv vi j i j i j( , ) . Similarly, the edge vector of e i j( , ) ; can be

constructed by = =e q qv vi j i j i j( , ) . Due to the corresponding

relationship between and e e, ( , )i j i j( , ) ( , ) is an edge vector corre-
spondence. Edge vector has a very important property that it is a
translation invariant, which can be used for parameter space decom-
position. We assume that both correspondences p q( , )i i and p q( , )j j are
exactly matched and there is no noise in them. Thus, p q( , )i i and p q( , )j j
strictly satisfy the rigid body transformation,

= +
= +

p Rq t
p Rq t

i i

j j (7)

Then, the relationship between e i j( , ) and e i j( , ) can be formulated as,

= = + + = =e p p Rq t Rq t R q q R e( ) ( ) ( )i j i j i j i j i j( , ) ( , ) (8)

From Eq. (8), we know that edge vectors e i j( , ) and e i j( , ) can be registered
by a three DoF rotation matrix. The rotation matrix R is also the one
used to register and . Thus, edge vector is able to eliminate the
translation component of rigid transformation and decompose the six
DoF problem into two subproblems. First, we use the edge vector sets to
estimate an optimal rotation matrix R between and ; after R is
found, we then rotationally register and , and search the optimal
translation vector t based on the idea of maximum consensus. Note that
the estimation on edge vector pair set is just the same as the estimation
on 3D point correspondence set, because an edge vector can also be
treated as a point or a 3D vector.

Fig. 2. An example of support edge voting. v v( , )i i and
=

v v{( , )}j j j 1
4 are node

correspondences, where nodes v v( , )i i and =v v{( , )}j j j 1
3 are correct matches

while node v v( , )4 4 is a false one. =e e{( , )}i j i j j( , ) ( , ) 1
4 are the support edge pairs of

v v( , )i i and the ni
v of v v( , )i i is 4. The vote number n v

4 of node v v( , )4 4 is 1.
Thus, correspondence v v( , )i i is more reliable than correspondence v v( , )4 4 .
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3.1.3. Cauchy-weighted lq-norm and model estimation
Motivation: L2-norm (least-squares) is widely used in photo-

grammetry, such as exterior orientation and bundle adjustment.
However, it is not a robust cost and is very sensitive to outliers. As can
be seen in Fig. 3, the curve of l2-norm cost increases quadratically with
residuals, which assigns more emphasis to observations with large re-
siduals (outliers). L1-norm cost gives equal emphasis to all observations;
hence, it is more robust than l2-norm. However, the influence of outliers
towards to the total cost is still very large. The curve of lq-norm

=q( 0.5) is much more gradual than l1-norm. It is able to largely dis-
count the effect of outliers. However, the lq-norm cost is unbounded. In
contrast, the proposed Cauchy weighted lq-norm cost is a bounded re-
descending function. As shown, Cauchy weighted lq-norm gives more
emphasis to outliers while less emphasis to observations with small
residuals (inliers). It almost completely discounts the influence of out-
liers and has a high degree of robustness. Compared with RANSAC-type
methods, the proposed Cauchy weighted lq-norm cost has a major ad-
vantage. Namely, the proposed cost can obtain optimal solutions while
RANSAC-type methods only get approximate solutions. RANSAC-type
methods only use a subset instead of all observations for model esti-
mation. For lack of redundant observations, they are sensitive to noise
and give no guarantee of the optimality of solutions.

Cauchy weighted lq-norm cost: Suppose we have obtained a set of

edge vector correspondences = eE { }i
N
1 and = eE { }i

N

1 based on
the results of edge voting, where N is the number of edge vectors. If
there are no noise and outliers, the transformation between these two
sets of observations is,

=e R ei i (9)

However, as above-mentioned, the results of edge voting still preserve a
portion of outliers. Hence, the l2-norm cost is no longer applicable.
Instead, we propose a new cost function based on weighted lq-norm

< <q(0 1), which is still robust even if the outlier rate is high. The new
cost function for rotation estimation is,
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where = w{ }i N
1 is a set of weighting coefficients. Ideally, large

weights (close to 1) should be given to inliers while small weights (close
to 0) are given to outliers, so that the effect of outliers towards to the
cost can be largely discounted. We use the Cauchy function to calculate
weights,

=
+

w u
u ri

i
2 (11)

where u is a scale factor and ri is an absolute residual. In Eq. (10), the
absolute residual is = Rr e ei i i 2. Eq. (10) is a non-smooth and
non-convex function. For simplicity, we introduce a set of auxiliary
variables = s{ }i N

1 into the function,

= =
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This constrained cost can be rewritten as an unconstrained one via
Lagrange function and solved by dual ascent method. However, dual
ascent has a prerequisite; namely, the function should be strictly
convex. Therefore, we adopt the ALF to rewrite the equation as (see
Appendix A for details about ALF),
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where R( , , , ) is the ALF of Eq. (12); = { }i N
1 is a set of dual

variables; and > 0 is a penalty coefficient.
Optimization via ADMM: There are two sets of variables in the

ALF, i.e., rotation R and weighting coefficients , and auxiliary
variables . Hence, this function can be solved by alternately opti-
mizing between R( , ) and via ADMM (see Appendix B for details
about ADMM). ADMM decomposes Eq. (13) into two major steps (note
that the multiplier variable update step is not listed),
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where superscript t is an iteration counter. Note that there is an ap-
proximation in Eq. (15). We use a known value wi

t 1 to approximate wi
such that i can also be treated as a known value. { }i N

1 and { }i N
1 are

only used for notation compactness,
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Fig. 3. The cost function curves, where the black, blue, green, and red curves
represent the l2-norm curve, l1-norm curve, lq-norm curve ( =q 0.5), and the
proposed Cauchy weighted lq-norm curve ( =q 0.5), respectively. (In the figure,
r represents residual and C r( ) represents cost.). (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)
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For step 1, R( , ) is known and is the variable. The object
function is a lq-norm penalized Least-Squares (lq LS) problem
(Marjanovic and Solo, 2014), which is separable and hence can be ef-
ficiently optimized via coordinate-wise optimal minimization methods.
Namely, each si can be optimized independently. By performing the
minimization of the separated Eq. (14) along j-th coordinate, step step 1
is simplified to the scalar version,

+ = +s s s sargmin
2

argmin | |
2

( )
s q

q

s

q

2

2
2

(17)

Then, the shrinkage algorithm can be adapted and the optimal solution
is given by (Marjanovic and Solo, 2014),
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where sgn(·) is the signum function; is computed by equation
=+ | | ( )t q t q1 1 with initial guess = +( | |)/20 .
For step 2, is known and R( , ) is the variable. The object

function is a Weighted Least-Squares (WLS) problem, which is generally
solved by Iteratively Reweighted Least-Squares (IRLS) (Holland and
Welsch, 1977). In each iteration of IRLS, we use the orthonormal matrix
method (Horn et al., 1988) to solve a close-form solution for rotation.
Based on the ADMM technique, the optimal rotation R can be esti-
mated. Then, the optimal translation vector t can be easily obtained.

3.1.4. Time complexity
The proposed WlqCR method consists of two main stages, i.e., edge

voting and transformation estimation. Since edge voting strategy needs
to compute the distance between each two feature points, its time
complexity is nO( )2 , where n is the number of correspondences in .
The main part of transformation estimation is to estimate the rotation
R. We use ADMM to optimize the rotation. In the step 1, we use a
shrinkage algorithm to calculate . Its time complexity is NO( ), where
N is the number of edge vectors. Since edge vectors are constructed
based on the k potential feature matches obtained by edge voting stage,
the size N should be smaller than k2, i.e., <N k n2 2. In the step 2, the
time complexity of orthonormal matrix method is NO( ); thus, the
complexity of the IRLS is t NO( )1 , where t1 is the number of iterations of
the IRLS algorithm. ADMM iteratively performs step 1 and step 2 until
convergence. If the number of iterations of ADMM is t2, the time com-
plexity of rotation estimation is +t t NO( (1 ) )2 1 . The total time com-
plexity of the proposed WlqCR is about + +n t t NO( (1 ) )2

2 1 . Generally,
the numbers of iterations t1 and t2 are very small compared with N, and
N n2. Thus, the time complexity of WlqCR can be simplified as nO( )2 .

3.2. Fine registration based on WlqICP

To further refine the result of correspondence-based registration, we
propose an ICP variant, i.e., WlqICP. Similar to the ICP, it also alternates
between correspondence establishment and transformation estimation,
which can be formulated as a two-step optimization,
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where hi
1 is a point that belongs to point cloud 1, i.e.,

h h n; ;i i
1

1
2

2 2 is the size of point cloud ;2 is a correspon-
dence set.

In optimation 1, transformation parameters R and t are known.
Hence, for each point hi

2
2, we search its nearest point in 1 as its

correspondence. (Note that the result of coarse registration can be used

to calculate an overlap ratio and reject potential false correspondences)
optimation 2 is also a Cauchy weighted lq-norm cost, which can be op-
timized via ADMM as the same as in Section 3.1.3. After replacing the
observations and transformation model in Eqs. (14)–(16), the optimi-
zation for optimation 2 is detailed as follows,
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For efficiency, we build a KD-tree for point cloud 1 in optimation 1. Its
time complexity is about n nO( log )1 1 , where n 1 is the size of point
cloud 1. The average time complexity of nearest search in KD-tree is

nO(log )1 . For all n 2 points in 2, the total nearest search complexity
is about n nO( log )2 1 . Hence, the time complexity of optimation 1 is

+n n nO(( )log )1 2 1 . As in our previous analysis (Section 3.1.4), the
time complexity of optimation 2 is +t t nO( (1 ) )2 1 2 . Because WlqICP
iteratively performs optimation 1 and optimation 2, the total time com-
plexity of WlqICP is + + +t n n n t t nO( (( )log (1 ) ))3 2 11 2 1 2 , where t3
is the number of iterations of WlqICP. Suppose the sizes n 1 and n 2 are
on the same order of magnitude, the total time complexity is simplified
as +t n n t t nO( ( log ))3 2 11 1 1 .

4. Experiments and evaluations

Here, we comprehensively study the performance of the proposed
PCR algorithm on both simulated and real data. First, a parameter study
experiment is conducted, which learns a reasonable value for parameter
. Then, we evaluate the proposed weighted lq-norm cost and our cor-
respondence-based coarse registration algorithm based on simulated
experiments. Finally, we compare our method with six other state-of-
the-art methods on challenging real-world data. Parameter is set to
0.5; parameter q is studied via experiments; is set to twice of the
noise level (or point cloud resolution). We use four metrics for quan-
titative evaluation, i.e., rotation error ER, translation error Et , Root-
Mean-Square Error (RMSE) (only for simulated experiments), and suc-
cess rate.

• Rotation error E [0, )R (Huynh, 2009), which is computed by,

= R RE trarccos ( ( ) ) 1
2R

gt e T

(24)

where Rgt is the ground truth rotation matrix; Re is the estimated
rotation matrix; and tr (·) is the trace of a matrix.
• Translation error = t tEt

e gt
2, where t gt is the ground truth

translation vector and te is the estimated one.

• RMSE, whose formula is = =RMSE rn i
n

i
1

1
2 , where ri is the residual

error of the i-th correspondence.
• Success rate. In simulated experiments, success rate is the ratio of
successful registration times in 1000 tests. The registration is suc-
cessful only if the RMSE of a test is less than twice of the noise level.
In real experiments, we regard a registration whose rotation error is
smaller than 2° and translation error is smaller than 1 m as a suc-
cessful registration.
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All the reported running time is calculated on a laptop with an Intel
Core i7-8550U @ 1.8 GHz CPU, 8 GB of RAM.

4.1. Parameter study

Parameter in Eq. (6) is important to our WlqCR algorithm. We
learn its reasonable value through simulated point set registration ex-
periments. Specifically, a 3D feature point set = q{ }i n

1 with n points
inside a box of [-500 m, 500 m] × [-500 m, 500 m] × [0, 500 m] is first
generated. The mean of is regard as the ground truth translation t gt

and a 3×3 Rodrigues rotation matrix is randomly generated to be the
ground truth rotation Rgt . Thus, the true correspondence set

= p{ }gt
i
gt n

1 of is obtained by = +p R q ti
gt gt

i
gt. To make the simu-

lation process more realistic, we add Gaussian noise with a zero mean
and a 5 cm deviation to gt , obtaining ¯ . We fix the number of correct
correspondences to 30, and sequentially increase the outlier rate noutlier
([0, 20%, 40%, 60%, 80%, 85%, 90%, 95%, 99%]). The number n is
computed by =n n30/(1 )outlier . Then, we select the last n 30 cor-
respondences from ¯ to add errors (the errors are randomly generated
between [ ¯ , ¯min max], where ¯min and ¯max are the smallest and largest
values in set ¯ , respectively.), obtaining outlier contaminated corre-
spondence set = = …p q p q i n{( , ) ; ; 1, 2, , }i i i i . Fig. 4 gives
the visualizations of several simulated 3D correspondence sets. We set

to 10 cm (twice of the noise level), =k 30 (number of inliers), and
estimate based on Eq. (6). The results are summarized in Table 1,
where each reported value is the average of 1000 individual tests. As
shown, when outlier rate is lower than 80%, inliers hold more than 90%
of correct edge correspondences; when outlier rate is 95%, inliers (only
5% of the whole observations) still hold 70% of correct edge corre-
spondences; for extremely high outlier rates, 1% of inliers can hold
more than 20% correct edge correspondences. Thus, can be set to 0.7

for easy cases and 0.2 for difficult cases. Actually, = 0.2 is also suitable
for easy cases, since a subset of inliers is enough for coarse registration.

4.2. Robustness of Cauchy weighted lq-norm

As aforementioned, the proposed Cauchy weighted lq-norm cost has
a high degree of robustness. To quantitatively evaluate it, we conduct a
simulated experiment that is similar to the Section 4.1. The only dif-
ference is that the outlier rate noutlier sequentially increases from 10% to
90%. Fig. 4 gives the visualizations of several simulated 3D corre-
spondence sets. We use the generated correspondences as input and

Fig. 4. Visualization of the simulated 3D correspondence set . Each subfigure contains two plots, i.e., before registration and after registration. Before registration
plot shows two input point sets, where green squares are points in and red dots are points in . After registration plot gives the registration result of the proposed
WlqCR. As shown, some green squares coincide with the red dots. These correspondences are correct match pairs (inliers) while others are false matches (outliers).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Study of the parameter .

Outlier rate 0% 20% 40% 60% 80% 85% 90% 95% 99%
1 0.99 0.98 0.96 0.90 0.87 0.87 0.70 0.23

Fig. 5. Comparisons of the proposed cost with classic Huber, Cauchy, and
Tukey robust cost on the simulated data. Subfigures (a)~(d) are the rotation
error, translation error, RMSE, and success rate results, respectively. For better
visualization, the vertical coordinates of subfigures (a)~(c) are plotted in
logarithmic..
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optimize Eq. (20) to estimate the rigid transformation. We also compare
the proposed cost with several classic robust cost functions, including
Huber function, Cauchy function, and Tukey function. The rotation
error ER, translation error Et , RMSE, and success rate are reported in
Fig. 5. Again, each reported value is the average of 1000 individual
tests.

As can be seen, classic robust cost functions including Huber cost,
Cauchy cost, and Tukey cost work very well when the outlier rate is
lower than 50%. Their results are comparable with our proposed cost.
However, they cannot deal with cases with more than 50% of outliers.
Once the outlier rate reaches 50%, they are completely ineffective. In
contrast, the proposed Cauchy weighted lq-norm is not very sensitive to
outlier rates. It performs perfect when the outlier rate is not higher than
80%. Specifically, the rotation error ER is smaller than 0.002; the
translation error Et is smaller than 1 cm; and the success rate is always
100%. Even though the noise level is 5 cm, the RMSE of our cost is still
smaller than 1 cm, which indicates that the proposed cost is robust to
noise as with the l2-norm cost. When the outlier rate is higher than 80%,
the robustness of the proposed cost slightly decreases. However, our
success rate is still higher than 90%. From this experiment, we can infer
that the ”breakdown point” of our weighted lq-norm is larger than 0.8,
which is much higher than traditional robust estimators, such as M-
estimators and LTS. Namely, the proposed WICP is more robust than the
TriICP algorithm. Our WlqICP is able to deal with cases with 20% of
overlaps, while TriICP can only deal with cases with more than 50% of
overlaps.

4.3. Evaluation of WlqCR on simulated data

The simulated process is the same as Section 4.1. Parameter is set
to 0.7. We compare our coarse registration algorithm, i.e., WlqCR, with
other three correspondence-based methods, including RANSAC
(Fischler and Bolles, 1981), FLO-RANSAC (Lebeda et al., 2012), and
FGR (Zhou et al., 2016). In RANSAC-type methods, orthonormal matrix
algorithm is applied to solve a close-form solution of rigid transfor-
mation for each hypothesis. Table 2 summarizes the detailed settings of
these algorithms. The average quantitative results are plotted in Fig. 6.
As shown, RANSAC and FLO-RANSAC obtain similar results. Both of
them perform well when the outlier rate is lower than 95%, i.e., the
average ER is about 0.004°, the average Et is about 0.030 m, and the
average RMSE is about 0.037 m. However, they often fail to estimate a
good solution when the outlier rate is extremely high. For example, the
success rate of RANSAC under 99% of outliers is only 7.7%. Although
FLO-RANSAC is more robust to high outlier rates than RANSAC, its
success rate is only 66.3%. FGR performs much worse than other

methods. When the observations are not contaminated by outliers (the
outlier rate is 0), FGR achieves similar model fitting accuracy with the
proposed WlqCR method, which is better than RANSAC-type methods.
However, FGR is very sensitive to outliers. Under 20% of outliers, its
rotation error is 0.099° and its translation error is 0.68 m. Since our
simulated cases are large scale, i.e., a box of [-500 m, 500 m] × [-500 m,
500 m] × [0, 500 m], 0.1° can also lead to large offsets. Its corre-
sponding RMSE is 0.76 m. Moreover, the fitting accuracy of FGR se-
verely decreases as the outlier rate increases. Its E E,R t, and RMSE
under 85% of outliers decrease to 1.60°, 5.876 m, and 6.340 m, re-
spectively. The success rate of FGR is close to 0 when the outlier rate is
higher than 20%, since we only regard registrations whose RMSEs are
less than 0.1 m as successful registrations. Generally, FGR is not sui-
table for large-scale or high outlier rate point cloud registration pro-
blem, whose results should be refined by other methods such as ICP. In
contrast, our WlqCR achieves the best performance among these four
methods. The proposed WlqCR is able to deal with cases with extremely
high outlier rates, whose success rate is still 100% under 99% of out-
liers. The average E E,R t and RMSE of all experiments are 0.002°,
0.012 m, and 0.014 m, respectively. The model estimation accuracy of
our WlqCR is much higher than RANSAC-type methods. The reason is
that RANSAC-type methods only use small subsets for model estima-
tion, which is sensitive to noise.

We calculate the running time of each method, which is reported in
Table 3. RANSAC and FLO-RANSAC are much slower than the proposed
WlqCR method, especially in cases with high outlier rates, since the
required sampling trials are huge. For example, our WlqCR is 500+
times faster than RNASC and 550+ times faster than FLO-RANSAC
when the outlier rate is 95%. Even though FGR is implemented in C+
+, it still cost more running time than our method. In most cases, our
WlqCR method is almost 40 times faster than FGR.

4.4. Challenging real data experiments

We also evaluate the proposed WlqCR and WlqICP methods on large
scale real data to demonstrate their practicality. We use the challenging
ETH LiDAR dataset3 for evaluation, which contains five categories, i.e.,
Office, Facade, Courtyard, Arch, and Trees. For efficiency, we apply
Voxel Grid downsampling algorithm (Rusu and Cousins, 2011) to de-
crease the resolution to 0.1 m. For each scan pair ( , )1 2 , we use ISS
(Zhong, 2009) detector to extract feature keypoints and use FPFH (Rusu

Table 2
Detailed settings of the compared state-of-the-art algorithms.

Method Parameters Implementation Input

RANSAC Subset size: 3; stop confidence: 0.99; inlier threshold: 0.1 m; maximum iterations:
1e5.

MATLAB; single thread https://www.
peterkovesi.com/matlabfns/index.html#

robust

Correspondences

FLO-RANSAC Subset size: 3; stop confidence: 0.99; inlier threshold: 0.1 m; maximum iterations:
1e5; local optimized subset size: 21; local optimized iterations: 50.

MATLAB; single thread https://zhipengcai.
github.io/

Correspondences

FGR Annealing rate: 1.2; inlier threshold: 0.1 m. C++; single thread https://github.com/intel-
isl/FastGlobalRegistration

Correspondences

S4PCS Overlap ratio: 0.5; subset size: 5000; registration accuracy: 0.1 m; maximum running
time: 1000s.

C++; single thread https://github.com/
nmellado/Super4PCS

Downsampled point
clouds

K4PCS Overlap ratio: 0.5; score threshold: 0.001; registration accuracy: 0.1 m; maximum
running time: 1000s.

C++; single thread http://pointclouds.org/ ISS keypoints

ICP maximum correspondence size: 20000; Overlap ratio: 0.5; error metric: point-to-
point; maximum iterations: 100; maximum distance threshold: 5 m.

C++; single thread https://www.mathworks.
com/help/vision/ref/pcregrigid.html

Downsampled point
clouds

Our WlqCR Parameters = = =q m0.5, 0.7 or 0.2, 0.1 ; maximum iterations of IRLS: 50;
maximum ADMM iterations: 50.

MATLAB; single thread http://www.escience.
cn/people/lijiayuan/index.html

Correspondences

Our WlqICP maximum correspondence size: 20000; Parameter =q 0.5; maximum distance
threshold: 5 m; maximum IRLS iterations: 50; maximum ADMM iterations: 50;

maximum WlqICP iterations: 100.

C++; single thread http://www.escience.cn/
people/lijiayuan/index.html

Downsampled point
clouds

3 http://www.prs.igp.ethz.ch/research/completed_projects/auto-
matic_registration_of_point_clouds.html
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et al., 2009) descriptor for feature description4. Similar to (Cai et al.,
2019), initial correspondence set is obtained based on K-nearest
neighbor search. Specifically, if the descriptor distance between pi and
qi is one of the top-5 nearest to each other, p q( , )i i is selected into the
initial correspondence set. Table 4 briefly summarizes the information
of each LiDAR category, including number of scan pairs NSP, overlap
ratios, average number of points , average number of keypoints

key , and average number of initial correspondences .
The ground truth transformation T is provided for each scan pair in

the ETH dataset. If <p qT ( )i i 2 , point correspondence p q( , )i i is
accepted as an inlier. The inlier threshold is set to 0.3 m (three times
of the point cloud resolution). The correspondence inlier rates of Office,
Facade, Courtyard, Arch, and Trees are only 1.77%, 4.91%, 3.86%,
0.67%, and 0.45%, respectively. The lowest outlier rate of these five
categories is still higher than 95% and two categories contain more
than 99% of outliers. Registration on the ETH dataset is very challen-
ging due to such extremely high outlier rates. The parameters of our
WlqCR method is set to = 0.2 (difficult cases) and = m0.1 (the
point cloud resolution). Apart from RANSAC, FLO-RANSAC, and FGR,
we add other three state-of-the-arts for comparison, i.e., S4PCS
(Mellado et al., 2014), K4PCS (Theiler et al., 2014), and ICP (Besl and
McKay, 1992). More details about these algorithms can be found in
Table 2.

The result of each scan pair is plotted in Fig. 7 (Only half of the scan
pairs in Facade and Courtyard categories are displayed). As shown,
RANSAC and FLO-RANSAC perform very well on the Office, Facade,

Fig. 6. Comparisons of the proposed WlqCR with RANSAC, FLO-RANSAC, and FGR on the simulated data. Subfigures (a)~(d) are the rotation error, translation error,
RMSE, and success rate results, respectively. The horizontal axis represents the outlier rate of the simulated initial correspondence set, which increases from 0 to 99%
([0, 20%, 40%, 60%, 80%, 85%, 90%, 95%, 99%]). For better visualization, the vertical coordinates of subfigures (a)~(c) are plotted in logarithmic. Smaller values in
subfigures (a)~(c) represent higher accuracies, and larger values in subfigure (d) represent better performance.

Table 3
Comparison of running time results (s).

Outlier rate Methods

RANSAC FLO-RANSAC FGR WlqCR

0% 0.090 0.108 0.083 0.002
20% 0.108 0.127 0.102 0.002
40% 0.108 0.261 0.133 0.002
60% 0.114 0.285 0.213 0.002
80% 0.315 0.334 0.381 0.002
85% 0.726 0.793 0.522 0.002
90% 2.278 2.616 0.763 0.003
95% 19.689 22.191 1.530 0.039
99% 46.818 139.592 8.834 0.505

Table 4
Information of the ETH dataset.

Info Office Facade Courtyard Arch Trees

NSP 8 21 28 8 10
Overlap > 80% 60%~70% 40%~70% 30%~40% 50%

H 10721 K 17343 K 12194 K 27423 K 20248 K
key 1487 2273 4084 5808 10404

3194 4408 9915 7569 14535

4 Both the implementations of ISS and FPFH are obtained from PCL: http://
pointclouds.org/
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Fig. 7. Comparisons of the proposed WlqCR and WlqICP with six state-of-the-art methods on the challenging ETH real data. Subfigures (a)~(e) are the results on the
Office, Facade, Courtyard, Arch, and Trees, respectively. Left figures plot the rotation error ER results and right figures plot the translation error Et results. The
horizontal axis represents scan pair IDs. For better visualization, the vertical axis is logarithmic. Smaller values of ER and Et represent higher accuracies..
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Fig. 8. Complete registration results. Left column is the input LiDAR scans. Each LiDAR scan has its own coordinate system and different scans are represented by
different colors. Before registration, point clouds of the input LiDAR scans are messy. Middle column is the results of WlqCR and the right one is the results refined by
WlqICP. As shown, the results after registration are impressing. Since WlqCR can obtain good enough results, the results of WlqCR and the refined ones look similar.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and Courtyard categories. As demonstrated in Section 4.3, both of them
are sensitive to extremely high outlier rate. Thus, they fail to register
several scan pairs in Arch and Trees categories, whose rotation errors
are even larger than 100°. FGR is not suitable for cases with high outlier
rates. Its performance is the worst on the most of scan pairs. For ex-
ample, its model estimation accuracy is the lowest on the Office and
Courtyard categories. S4PCS is comparable with RANSAC-type
methods. It works well on the first four categories, which is even better
than FLO-RANSAC on the Arch dataset. K4PCS performs less satisfac-
tory than S4PCS. It fails to register several scan pairs of Facade cate-
gory. K4PCS uses keypoints instead of downsampled point clouds as
input, which may be too sparse to construct reliable 4PCS. The pro-
posed WlqCR obtains the best performance among all coarse registration
methods. It gets impressed results in extremely difficult cases, such as
Arch and Trees. The registration accuracy of WlqCR is only slightly
lower than the results refined by ICP. In some cases of the Courtyard
dataset, ICP refinement even decreases the registration accuracy of our
WlqCR. From Fig. 7, we can see that the proposed WlqICP fine regis-
tration algorithm has a higher registration accuracy than ICP. The
reasons may be two folds: First, the proposed WlqICP is robust to low
overlap ratios. With the initial transformation provided by our WlqCR, it
does not need to set up the overlap ratio parameters. However, classic
ICP is sensitive to overlap ratios. Different values of overlap ratio lead
to very different results. Second, the proposed WlqICP uses a weighted
cost function, which gives large weights to correspondences with small
residuals and relatively small weights to noise with relatively large
residuals. Therefore, WlqICP is more robust to noise than traditional
ICP. The complete registration results of each category of the proposed
WlqCR and WlqCR + WlqICP are shown in Fig. 8.

Table 5 and Table 6 report the registration accuracy of each cate-
gory. As can be seen, FLO-RANSAC is more accurate than RANSAC. The
reason is: RANSAC estimates models based on minimum subsets (3-
point correspondence subset) while FLO-RANSAC uses much larger
subsets to refine the model estimated by RANSAC. Redundant ob-
servations are able to improve the robustness to noise. In some cate-
gories, S4PCS and K4PCS are less accurate than RANSAC-type methods.
Their results can be used as initial results and should be refined by other
fine registration methods. The proposed WlqCR obtains a registration
accuracy of 0.21° and 0.038 m on cases with 99.55% of outliers, which
is much superior to other coarse registration methods and can be

directly used for realistic applications. First, our WlqCR adapts an equal-
length edge constraint and a support edge voting strategy to filter
outliers. Second, the cost function used in WlqCR has a high degree of
robustness, i.e., it is still robust even if the outlier rate is 80%~90%.
Benefiting from these two aspects, the proposed WlqCR can tolerate
extremely high outlier rates. The proposed WlqICP is more accurate
than ICP on all the categories. The maximum ER of WlqCR + ICP is
0.21° while the maximum ER of WlqCR + WlqICP is only 0.10°. In terms
of Et , the maximum values of WlqCR + ICP and WlqCR + WlqICP are
0.082 m and 0.036 m, respectively. Table 7 summarizes the success rate
of each method. As reported, the total average success rates of RANSAC,
FLO-RANSAC, FGR, S4PCS, K4PCS, WlqCR, WlqCR + ICP, and
WlqCR + WlqICP are 64.5%, 73.5%, 25.7%, 67.9%, 62.7%, 100%,
98.6%, and 100%, respectively. Our WlqCR ranks best among coarse
registration methods, which achieves 26.5% growth rates compared
with the second-best method, i.e., FLO-RANSAC.

Table 8 reports the running time results. Note that the reported
value of each method is the optimization time, which does not include
the running time of feature extraction. As shown, our WlqCR algorithm
is the fastest. WlqCR is almost 200 times faster than RANSAC and FLO-
RANSAC on the Office. However, if the size of initial correspondence set
is large, the proposed WlqCR becomes much slower. For example,
WlqCR only costs 1.0s on the Facade with 4408 correspondences,
whereas it costs 23.4s on the Trees with 14535 correspondences. The
reason is that the proposed WlqCR needs to compute the distance be-
tween each two feature points. Thus, the time complexity of our WlqCR
is nO( )2 , where n is the number of correspondences. Fortunately, n is
much smaller than the size of point clouds . Generally, 10000 cor-
respondences are enough for our WlqCR to estimate a good solution (if
the outlier rate is 99.5%, 10000 correspondences still contain 50 in-
liers). So, we can set maximum number of correspondences to 10000
for efficiency. On the Courtyard with 9915 correspondences, WlqCR
only takes 8.0s in MATLAB. The proposed WlqICP is slower than classic
ICP algorithm, because the optimization of weighted lq-norm is more
difficult than traditional l2-norm. Fortunately, if a good initial guess is
provided to WlqICP, it is much faster than S4PCS and K4PCS. For ex-
ample, our WlqCR + WlqICP is almost 10 times faster than S4PCS and
K4PCS on the Trees.

Table 5
Rotation error ER (°).

Method Office Facade Courtyard Arch Trees

RANSAC 3.24 0.72 0.30 38.51 31.83
FLO-RANSAC 1.91 0.52 0.12 24.97 21.52

FGR 57.21 2.35 1.42 26.17 39.72
S4PCS 0.74 1.11 0.39 2.66 18.39
K4PCS 0.75 3.96 0.68 5.28 47.88
WlqCR 0.26 0.32 0.07 0.15 0.21

WlqCR + ICP 0.21 0.16 0.12 0.07 0.12
WlqCR + WlqICP 0.10 0.07 0.04 0.03 0.05

Table 6
Translation error Et (m).

Method Office Facade Courtyard Arch Trees

RANSAC 0.20 0.16 0.12 7.55 4.34
FLO-RANSAC 0.20 0.10 0.06 4.15 6.07

FGR 2.07 0.67 1.07 8.78 7.71
S4PCS 0.27 0.16 0.23 0.66 3.30
K4PCS 0.10 0.96 0.36 4.67 8.39
WlqCR 0.025 0.042 0.041 0.043 0.038

WlqCR + ICP 0.021 0.019 0.082 0.040 0.032
WlqCR + WlqICP 0.009 0.009 0.036 0.014 0.005

Table 7
Success rate (%).

Method Office Facade Courtyard Arch Trees

RANSAC 75 100 100 37.5 10
FLO-RANSAC 87.5 100 100 50 30

FGR 25 57.1 46.4 0 0
S4PCS 100 85.7 96.4 37.5 20
K4PCS 100 66.7 89.3 37.5 20
WlqCR 100 100 100 100 100

WlqCR + ICP 100 100 92.9 100 100
WlqCR + WlqICP 100 100 100 100 100

Table 8
Running Time (s).

Method Office Facade Courtyard Arch Trees

RANSAC 111.2 24.9 101.2 126.2 171.5
FLO-RANSAC 116.9 25.8 104.8 131.4 177.1

FGR 18.9 26.3 42.1 46.6 87.9
S4PCS 1000 1000 686.2 703.3 751.8
K4PCS 12.7 10.8 340.0 674.6 1000
WlqCR 0.6 1.0 8.0 4.8 23.4

WlqCR + ICP 1.4 5.2 31.3 54.9 47.4
WlqCR + WlqICP 5.3 6.4 44.5 75.7 78.9
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5. Conclusions

In this paper, we propose an accurate, robust, and efficient PCR
method in a coarse-to-fine manner. We develop two novel algorithms
based on topological graph and Cauchy-weighted lq-norm cost.
Specifically, we first propose a correspondence-based coarse registra-
tion approach called WlqCR, which can tolerate extremely high outlier
rates (higher than 99%). The ultrahigh robustness of WlqCR is benefit
from two aspects: first, we transform the point matching problem to a
high-level edge matching problem and introduce a support edge voting
strategy to filter outliers; second, we propose a new cost function,
which has a high degree of robustness, i.e., it is still robust even if the
outlier rate is 80%~90%. Then, we propose a new ICP variant called
WlqICP, which is much more robust to partial overlaps compared with
current ICP and its variants. In our method, we ignore the scale between
point clouds. Thus, it is not suitable for multi-source point cloud re-
gistration problem, such as registration of a structure-from-motion
point cloud and a LiDAR point cloud. Fortunately, it is easy to extend
our method to deal with scale changes. We can calculate a length ratio

for each edge correspondence. Then, a length ratio consensus max-
imization procedure can be used to estimate the optimal scale para-
meter.
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Appendix A. Augmented Lagrange function

Consider an equality constrained problem,

= = …x xf s t g i nargmin ( ) . . ( ) 0 1, 2, ,
x

i (A.1)

where x k . This constrained problem can be converted to an unconstrained problem by the Lagrange function,

= +
=

x x xf g, ( ) ( )
i

n

i i
1 (A.2)

where x( , ) is a Lagrange function; = … …[ , , , ]i n
n

1 is a vector of Lagrange multipliers associated with constraints. Eq. (A.2) can be
optimized by the method of Lagrange multipliers or dual ascent method. However, both them assume that the objective function is convex. If the cost
is not a convex function, they cannot guarantee to obtain the global or even a local solution. Fortunately, augmented Lagrangian methods can yield
convergence without assumptions of convexity. The objective of augmented Lagrangian method for Eq. (A.1) is:

= + +
= =

x x x xf g g, ( ) ( )
2

( )
i

n

i i
i

n

i
1 1

2

(A.3)

where x( , ) is an augmented Lagrange function (ALF); > 0 is a penalty parameter. ALF adds a quadratic penalty to the usual Lagrange function.

Appendix B. Alternating direction method of multipliers

Alternating direction method of multipliers (ADMM) is an extension of the augmented Lagrangian method. It has the superior convergence of the
method of multipliers and the decomposability property of the dual ascent method. ADMM is very suitable for solving problems that the variables x
can be split into two parts, i.e., it is suitable for problems in the form,

= +
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where = +x x xf f f( ) ( ) ( )1 1 2 2 and =x x x[ , ]1 2 . Using ALF to convert this object to an unconstrained function, we have,
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ADMM decomposes the ALF cost into subproblems, which consists of three-step iterations,
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= + = …+ + +step3 x xg i n: ( , ) 1, 2, ,i
t
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t

i
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1
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2
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where superscript t is an iteration counter. step 1 is the x1-minimization step, where x1 is the only variable and x bmlambda( , )2 is known; step 2 is the
x2-minimization step, where x2 is the only variable and x bmlambda( , )1 is known; step 3 is a multiplier variable update step. More details about ALF
and ADMM can be found in literature (Boyd et al., 2011).
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