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A B S T R A C T   

Pairwise point cloud registration (PCR) is a crucial problem in photogrammetry, which aims to find a rigid 
transformation that registers a pair of point clouds. Typically, PCR is performed in a coarse-to-fine manner. 
Coarse registration provides good initial transformations for fine registration, which determines whether the PCR 
can succeed. RANSAC-based correspondence registration is the most popular technique for coarse registration. 
However, the outlier rate of feature correspondences extracted from point clouds is generally very high. Current 
RANSAC-variants require a huge number of trials to achieve satisfactory results at high outlier rates. This paper 
proposes a fast and robust RANSAC-variant for PCR, called graph enhanced sample consensus (GESAC). GESAC 
improves classic RANSAC-family in both sampling and model fitting steps. In the sampling, GESAC generates a 
much larger subset instead of a minimal subset for model fitting. RANSAC-variants treat a subset as a good one 
only if the correspondences in the subset are all inliers. In contrast to RANSAC-variants, GESAC allows outliers in 
the subset and only requires three inliers in the case of point cloud coregistration. Hence, the probability to 
obtain good subsets of GESAC is much larger than the ones of classic RANSAC-variants. GESAC uses an equal- 
length constraint to filter “degraded” subsets and expresses a subset as a graph. Then, a max-pooling graph 
matching strategy is applied to remove potential outliers in the subset. In the model fitting, GESAC introduces a 
shape-annealing robust estimate instead of classic least-squares for rigid transformation estimation. Hence, even 
if the subset cleaned by graph matching still contains outliers, GESAC is able to recover a correct solution for 
PCR. Both simulated and real experiments demonstrate the power of GESAC, i.e., it can tolerate up to more than 
99% outliers and is 4000 þ times faster than RANSAC at outlier rates above 99% (Note that the running time of 
feature extraction is not included).   

1. Introduction 

Point cloud registration (PCR) is a very important step in 3D scan-
ning, which has been widely applied in the fields of photogrammetry, 
surveying and mapping, computer vision, and robotics. For instance, 
PCR is substantial to generate the 3D panorama of an object scene; it can 
be used to register a structure-from-motion point cloud and a LiDAR 
point cloud; it is also a main step in simultaneous localization and 
mapping (SLAM), which calculates the trajectory of a robot. Due to 
occlusions and limited field-of-view, a single point cloud captured by a 
3D scanner generally covers only a part of the scene. Thus, similar to 
image-based reconstruction, it is necessary to measure a sequence of 3D 
scans from different perspectives to cover the whole scene. These 

individual 3D scans can be merged using pairwise PCR, which finds a 
rigid transformation that registers a pair of 3D scans into a common 
reference system (Li et al., 2020). 

Currently, one of the most popular strategies for PCR is in a coarse- 
to-fine manner (Dong et al., 2018). First, a coarse registration method is 
applied to provide an initial guess of the rigid transformation; then, a 
fine registration algorithm such as iterative closest point (ICP) proposed 
by Besl and McKay (1992) refines the initial guess and provides an ac-
curate result. For example, the processing software of the RIEGL VZ- 
10001 uses artificial markers for coarse registration and ICP for fine 
registration. ICP is a milestone and the de facto standard for PCR. 
However, it only finds a local minimum of the transformation and hence 
is very sensitive to the initial guesses. If the initial parameters are not 
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sufficiently good, ICP may fail to register the point clouds. Therefore, 
coarse registration determines whether the PCR can succeed. In coarse 
registration, feature-based methods are flexible and inexpensive. So, this 
paper only focuses on feature-based coarse registration. 

RANSAC-based (Fischler and Bolles, 1981) correspondence regis-
tration is the most popular technique in coarse registration (Dong et al., 
2018). First, initial feature correspondences are extracted and matched 
from point clouds based on feature detectors and descriptors. Then, a 
RANSAC-type algorithm is adapted to simultaneously remove outliers 
and fit the rigid transformation model. Because of lack of texture, un-
even point densities, and noise, 3D feature matching is much less ac-
curate compared to its 2D counterparts like scale-invariant feature 
transform (SIFT) algorithm (Lowe, 2004) and radiation-variation 
insensitive feature transform (RIFT) algorithm (Li et al., 2019b), 
which results in much higher outlier rates. As pointed out by Yang and 
Carlone (2019), it is common to have 95% of outliers in the initial 3D 
correspondence set. Current RANSAC-variants require a huge number of 
trials to achieve correct results at such high outlier rates, which largely 
decrease their practicability. For example, RANSAC theoretically re-
quires more than 4.6 million trials (see Section 3.2.4 for details) to 
generate at least one good sample (the confidence is 0.99) at an outlier 
rate of 99%. Thus, RANSAC variants usually limit the maximum number 
of trials in realistic applications. However, this will decrease their 
robustness. 

Graph matching can also be used for correspondence-based PCR. 
Generally, feature points are represented as graphs, and graph matching 
seeks reliable correspondences by minimizing the distortions of the two 
graphs. Then, the rigid transformation is estimated based on the reliable 
correspondences. The major drawback of graph matching lies in its NP- 
hard nature, since it is essentially a quadratic assignment problem. 
Although many algorithms have been proposed, the huge computational 
costs still limit their usages in realistic PCR task. 

In this paper, we propose a new RANSAC-variant called graph 
enhanced sample consensus (GESAC) for PCR, which is fast and robust. 
GESAC improves both steps of classic RANSAC-type methods, i.e., 
random sampling and model fitting. In the random sampling, RANSAC- 
variants use a minimal subset with three feature correspondences for 
rigid transformation estimation. They treat the sampled subset as a good 
one only if the three correspondences are all inliers. In contrast, GESAC 
samples a much larger subset (in our experiments, the size of a subset is 
32). It allows outliers in the subset and only requires three inliers in the 
case of point cloud coregistration. Therefore, the probability to obtain 
good subsets of GESAC is much larger than the ones of classic RANSAC- 
variants. In theory, GESAC only requires 1500 trials (see Section 3.2.4 
for details) to generate at least one good subset sample (the confidence is 
0.99) at an outlier rate of 99%, which is only 1/4000 of the one of 
RANSAC. Specifically, we observe that the two lines of a correct line 
correspondence detected from light detection and ranging (LiDAR) point 
clouds should have approximately the same length, since the length of a 
line is invariant to rotations and translations. Each pair of point corre-
spondences can construct a line correspondence. Thus, if both the point 
correspondences are correct, the lengths of the two constructed lines are 
approximately the same. We regard this as an equal-length constraint 
and use it to filter “degraded” subsets. If a subset contains more than two 
correspondences that satisfy the equal-length constraint, it is regarded 
as a “non-degraded” subset; otherwise, it is a “degraded” one. Then, 
GESAC uses a graph to express a subset and removes potential outliers by 
a graph matching algorithm. GESAC adapts a max-pooling strategy to 
solve this graph matching problem. Since the size of the graph is very 
small, the graph matching can be performed very efficiently. 

In the model fitting step, GESAC applies a shape-controlling cost 
(Barron, 2019) instead of the classic least-squares cost and presents a 
shape-annealing robust estimate strategy in the iteratively reweighted 
least squares (IRLS) algorithm (Holland and Welsch, 1977) to optimize 
this cost. Thus, even if the subset cleaned by graph matching still con-
tains outliers, GESAC can recover a correct solution. The hypothesize- 

and-verify framework, equal-length constraint, subset graph matching, 
and shape-annealing estimate together guarantee that GESAC is able to 
tolerate extremely high outlier rates. Extensive simulated and real ex-
periments show that GESAC largely outperforms other compared state- 
of-the-art methods. The contributions of this paper lie in three aspects:  

� We propose a new RANSAC variant for PCR that does not follow the 
basic idea of sampling in current RANSAC-type methods. To our best 
knowledge, the proposed GESAC is the only method that directly 
extends RANSAC by using higher than MSSs and allowing outliers in 
the samples for model fitting.  
� We design a two-stage filtering strategy to identify good subsets. We 

propose an equal-length constraint to filter “degraded” subsets. We 
also integrate a graph matching algorithm in a RANSAC-based 
framework.  
� We propose a coarse-to-fine optimization in the IRLS called shape- 

annealing robust estimate. Compared with M-estimates, the shape- 
annealing estimate can largely alleviate that the solver gets stuck 
in local minima. 

2. Related work 

2.1. 3D Keypoint matching 

3D keypoint matching consists of three steps, which is the same as its 
2D counterparts. First, keypoints are detected from point clouds based 
on feature detectors (e.g., local surface patches (LSP) detector (Chen and 
Bhanu, 2007), intrinsic shape signatures (ISS) detector (Zhong, 2009), 
MeshDoG detector (Zaharescu et al., 2009), or KeypointNet (Suwaja-
nakorn et al., 2018)), which analyse the local distribution of points to 
identify highly distinctive points; then, these keypoints are encoded to 
feature vectors via descriptors (e.g., spin image descriptor (Johnson and 
Hebert, 1999), fast point feature histogram (FPFH) descriptor (Rusu 
et al., 2009), signature of histogram of orientations (SHOT) descriptor 
(Salti et al., 2014), or 3DSmoothNet (Gojcic et al., 2019)), so that the 
similarities between different keypoints can be easily computed; finally, 
matching scores between two sets of features are calculated and “one-to- 
one” corresponding relationship is established via various matching 
strategies such as nearest neighbor distance ratio (Lowe, 2004) or a chi- 
square test (Zhong, 2009). More comprehensive studies of 3D feature 
detectors and descriptors can be found in (Tombari et al., 2013; Guo 
et al., 2016). 

2.2. RANSAC-based registration 

Robust estimation aims to recover the geometric model from outlier 
contaminated observations. A large number of robust estimation algo-
rithms have been applied to PCR problems, such as M-estimators (Zhou 
et al., 2016), least trimmed squares (Chetverikov et al., 2005), q-norm 
estimation (Li et al., 2016), truncated least squares (Yang and Carlone, 
2019), weighted q-norm estimation (Li et al., 2020) and RANSAC-family 
(Fischler and Bolles, 1981), to name a few. Among these methods, 
perhaps the RANSAC and its variants are the most widely used and have 
become a de facto standard for correspondence-based coarse registra-
tion. RANSAC is a hypothesize-and-verify technique, which alternately 
performs random sampling and model fitting until the stopping criterion 
is reached. Specifically, a minimal required ”non-degraded” subset of 
the input observations (e.g., three correspondences in the case of PCR) is 
first randomly selected; then, a rigid transformation model is fitted 
based on this subset and the size of consensus is calculated. These two 
steps are repeatedly proceeded until the stopping criterion is reached 
and the model with the largest consensus size is accepted as the satis-
factory solution. 

RANSAC has many variants. MLESAC (Torr and Zisserman, 2000) is a 
generalization of RANSAC, which maximizes the likelihood rather than 
the size of consensus. Tordoff and Murray (2005) used prior 
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probabilities of matches (e.g., matching scores) to guide MLESAC. Li 
et al. (2017, 2019a) introduced a sample checking strategy into RANSAC 
based on normalized barycentric coordinates. Locally optimized RAN-
SAC (LO-RANSAC) method (Chum et al., 2003) and fixed locally opti-
mized RANSAC (FLO-RANSAC) method (Lebeda et al., 2012) add an 
inner loop into RANSAC to locally refine the fitted model based on its 
consensus set. Randomized RANSAC (R-RANSAC) algorithm (Matas and 
Chum, 2004) introduces a statistical test (called Tðd;dÞ test) on randomly 
picked observations to reduce the time complexity. However, if the 
outlier rate is extremely high (e.g., 90%e99%), Tðd;dÞ test may reject 
good subset samples, which, in turn, increases the number of sampling 
trials. StaRSaC (Choi and Medioni, 2009) relaxes the requirement of the 
inlier threshold by performing standard RANSAC multiple times with 
different inlier thresholds. Raguram et al. (2012) proposed a universal 
framework for RANSAC-variants, called universal RANSAC (USAC), 
which incorporates many practical and computational tricks, including 
tricks on sampling, sample check, model check, model verification, and 
model refinement. Deep learning can also be used to improve the sam-
pling of RANSAC. For example, Brachmann et al. (2017) proposed a 
differentiable sample consensus (DSAC) algorithm that uses a 
probabilistic-based hypothesis selection to learn good samples. 

The goal of RANSAC-type methods is to select outlier-free samples 
for model fitting. Because the probability of drawing a bad sample in-
creases exponentially with the size of the sample, all current RANSAC- 
variants use a minimal required size. The speed of RANSAC-variants 
mainly depends on two aspects, i.e., the number of sampling trials and 
the size of the observations. Although many efforts have been made to 
improve the random sampling stage, it is still very time-consuming at 
extremely high outliers. For example, at an outlier rate of 99%, current 
RANSAC-variants require more than 4.6 million trials to generate at 
least one good sample with a confidence of 0.99. 

2.3. Graph matching 

Graphs have been widely used in feature matching (Cho et al., 2010), 
point cloud segmentation (Xu et al., 2017), model fitting (Araújo and 
Oliveira, 2020; Yu et al., 2010), and object recognition (Berner et al., 
2008; Wu et al., 2013), etc. Graph matching is a powerful technique that 
seeks the optimal correspondence between two graphs maximizing the 
affinities of their nodes and edges. Because the combinatorial nature of 
graph matching makes the global solution hardly available, a variety of 
approximate solutions have been presented. For example, Leordeanu 
and Hebert (2005) proposed an efficient approximation called spectral 
matching (SM) to correspondence problems based on spectral relaxa-
tion. Cour et al. (2007) proposed an extended SM named spectral 
matching with affine constraint (SMAC). Cho et al. (2010) introduced a 
random walk view for graph matching and presented a re-weighted 
random walk matching (RRWM) method. Similar to SM, RRWM for-
mulates the matching problem as a node selection problem on an asso-
ciation graph. In another work (Cho et al., 2014), they presented a max- 
pooling strategy instead of traditional sum-pooling to graph matching. 
Max-pooling strategy can effectively suppress most of the noisy scores 
from outliers. Zass and Shashua (2008) proposed a new framework for 
graph matching from a probabilistic perspective. They formalized a soft 
matching criterion based on a probabilistic interpretation and induced 
an algebraic relation between the desired probabilistic matching and the 
edge matrix. Egozi et al. (2012) merged the two ideas of spectral 
relaxation and probabilistic framework. They interpreted the SM 
scheme as a maximum likelihood estimate of the assignment probabil-
ities and proposed a new probabilistic solution based on some assump-
tions. Leordeanu et al. (2009) proposed an integer projected fixed-point 
method for objective function optimization in the integer domain. Wang 
et al. (2017) utilized path following strategy to improve graph matching 
accuracy. Due to the combinatorial nature of graph matching, the 
computational costs of these methods are very high, which greatly 

reduce their competitiveness. 

2.4. Higher than minimal sampling 

According to Tennakoon et al. (2015), there are two group of 
methods that use higher than minimal subset samples (MSSs) to solve 
the model-fitting problem. 

The first group of methods are clustering-based. Different from 
traditional clustering methods that are based on a pairwise distance 
measure defined by two points (the size of MSSs is 2), these methods use 
higher than MSSs to generate affinity relations between those points and 
formulate the clustering as a hyper-graph partitioning problem. For 
example, Agarwal et al. (2005) proposed a two-step method for solving 
the hyper-graph partitioning problem. Liu et al. (2010) introduced a 
method to directly partition the hyper-graph without a pairwise graph 
conversion step. In their another work (Liu and Yan, 2012), they inte-
grated a hypothesize-and-verify strategy with MSSs to approximately 
construct the hyper-graph. These methods are different from the pro-
posed GESAC. The higher than MSSs here are used for computing af-
finities of the hyper-graph while the ones in GESAC are used for model 
estimation. Essentially, the meaning of the MSS in clustering is different 
from the one in RANSAC-type methods. The MSS here is used for dis-
tance measure computation and its size p is 2 (Agarwal et al., 2005). 
However, the MSS in RANSAC is model-dependent, e.g., the sizes of the 
MSS for a rigid model and a Homography model are 3 and 4, 
respectively. 

Another class of methods are based on a hypothesize-and-verify 
technique, which use higher than MSSs to improve the quality of the 
hypothesis. In LO-RANSAC and FLO-RANSAC, they first use a MSS to fit 
a model and extract inliers that are consistent with the model; then, they 
generate a higher than MSS from the inliers to refine the model. Actu-
ally, they follow the basic idea of the classic RANSAC that uses MSSs to 
generate hypotheses. Pham et al. (2014) proposed random cluster 
models to generate hypotheses. They first used an adjacency graph to 
extract inlier structures from points and then sampled higher than MSS 
from the inlier structures. However, it is impractical to directly seek 
inlier structures in cases with high outlier rates. Moreover, the afore-
mentioned methods cannot allow outliers in the samples. Perhaps the 
most relevant to our work is (Tennakoon et al., 2015). This method uses 
higher than MSSs to generate hypotheses and allows outliers in the 
samples. Unlike GESAC, it is not a RANSAC-variant. Moreover, the size 
of samples in this method is small, i.e., p þ 2, and the least k-th order 
statistics (LkOS) cost is sensitive to high outlier rates (Chin and Suter, 
2017). 

As pointed out by Tennakoon et al. (2015), all these two groups of 
methods do not directly extend RANSAC-like methods by using higher 
than MSSs for hypothesis generation. The reasons are twofold: (1) 
Higher than MSSs increase the computational complexity due to the 
decreasing probability of selecting a clean sample. (2) It is difficult to 
know that a good hypothesis has been reached. This paper addresses 
these two problems and proposes a new RANSAC-variant called GESAC. 
For the first problem, GESAC allows outliers in the higher than MSSs, 
which increases probability of selecting a useful sample. For the second 
problem, GESAC presents a two-stage filtering strategy and a shape- 
annealing estimate to identify good hypotheses. GESAC also follows 
the stopping criterion of RANSAC. 

3. Methodology 

In this section, we first give the problem formulation of 
correspondence-based PCR. Then, we describe several important steps 
involved in the proposed GESAC algorithm, including equal-length 
constraint, point set graph matching, shape-annealing robust estimate, 
and stopping criterion. Finally, the computational complexity is 
analysed. 
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3.1. Problem formulation 

Given a 3D correspondence set M ¼ ðX ;YÞ, where X ¼ fxig
n
1 and 

Y ¼ fyig
n
1 (xi; yi 2 R3), such that: 

yi ¼ Rxi þ tþ υiþ εi (1)  

where R 2 SOð3Þ is a 3D orthogonal rotation matrix; t 2 R3 is a 3D 
translation vector; εi is a noise term; and υi is a zero vector for an inlier, 
or an arbitrary vector for an outlier. In other words, if a correspondence 
ðxi; yiÞ is an inlier, we have yi ¼ Rxi þ t þ εi; otherwise, the relation 
between xi and yi can be arbitrary. The goal of registration is to estimate 
the optimal rigid transformation between inliers. Note that the proposed 
GESAC is designed for registration of LiDAR point clouds that have the 
same scale. Therefore, it is not suitable for cases with unknown scales 
such as photogrammetric point clouds. 

Registration without outliers. Suppose correspondences in the set 
M are all inliers, i.e., υi ¼ 0; 8i, and εi is a Gaussian noise, the problem 
described in the above becomes a least-squares problem. Then, the 
optimal closed-form solution of ðR; tÞ can be easily computed by using 
Horn’s orthonormal matrix method (Horn et al., 1988). 

Registration with outliers. In real applications, correspondences 
obtained by keypoint matching generally contain a large fraction of 
spurious data (outliers). However, the least-squares cost is very sensitive 
to outliers. A single outlier in the observations can result in arbitrarily 
wrong estimation. Hence, a good way is to wrap elegant closed-form 
solutions such as Horn’s method (Horn et al., 1988) within a 
RANSAC-like scheme. As analysed, current RANSAC variants are not 
suitable for extremely high outlier rates. This paper proposes a new 
variant, i.e., GESAC, to deal with such a problem. 

3.2. GESAC 

Given a point cloud pair ðP;QÞ, the initial correspondence set M is 
extracted by using the ISS detector (Zhong, 2009) and the FPFH 
descriptor (Rusu et al., 2009). Then, a hypothesize-and-verify scheme is 
adapted to estimate a rigid transformation model. In the first step, we 
repeatedly generate a subset Sk⊂M with size jSkj ¼ m (3 < m≪n), 
where k is an iteration counter. An equal-length constraint is used to 
filter “degraded” subsets. If a subset Sk is “non-degraded”, only corre-
spondences that satisfy the constraint are retained, obtaining a subset 
S0k. Then, a point set graph matching algorithm is applied to obtain a 
cleaned subset S00k . In the second step, we use a shape-annealing robust 
estimate to estimate a rigid model ðRk; tkÞ for S00k and compute the 
consensus set Ck⊆M based on an inlier threshold λ that is consistent 
with the model. The model ðR*; t*Þ with the largest consensus set is 
accepted as the optimal solution. 

3.2.1. Equal-length constraint 
Definition: Given two correct correspondences ðxi; yiÞ and ðxj; yjÞ, 

then, the length of vector yij ¼ yj � yi is approximately equal to the one of 
vector xij ¼ xj � xi, i.e., 

ðdy
ij ¼ kyj � yik2Þ � ðd

x
ij ¼ kxj � xik2Þ (2)  

where dy
ij and dx

ij are the lengths of yij and xij, respectively. 
So, if a pair of correspondences are inliers, they must satisfy the 

equal-length constraint. As known, at least three non-collinear inliers 
are required to estimate a rigid transformation in 3D space. These inliers 
can construct at least 3 pairs of correspondences that satisfy the 
constraint. In GESAC, we first construct mðm � 1Þ=2 pairs of 

correspondences for a subset Sk; then, the equal-length constraint is 
checked for each pair fðxi; yiÞ; ðxj; yjÞg based on jdy

ij � dx
ijj⩽λ. If the 

number of pairs inside Sk that satisfy the constraint is smaller than 3, the 
subset is regarded as a “degraded” one. For a “non-degraded” subset, 
only correspondences that satisfy the constraint are retained, obtaining 
S
0

k. S
0

k can not be directly used for least-squares estimation such as 
Horn’s method, since a pair of outlier correspondences may also have 
the same length. S

0

k usually contains outliers. Hence, the outlier filtering 
strategy (point set graph matching) and robust estimation (shape- 
annealing estimate) are necessary. 

3.2.2. Point set graph matching 
A graph is a useful data structure for the representation of point sets, 

which has been widely used in computer vision and photogrammetry. 
Fig. 1 shows a graph, where the nodes represent points and the edges 
describe relations between points. Graphs have some important prop-
erties, i.e., they are invariant to translation, rotation, and scale changes, 
etc. Thus, graphs are often used in correspondence problems. Graph 
matching refers to a problem that seeks the optimal correspondence 
between two graphs to maximize the affinities of their nodes and edges. 

Graph matching problem: Given two graphs G ¼ ðV;EÞ and G0 ¼
ðV0 ;E0 Þ, where V (V0 ) is a set of node vertices and E (E0 ) is an edge set, 
graph matching aims to find a subset of potential correct matches rep-
resented by a binary assignment matrix Z 2 f0;1gnG�nG0 that maximizes 
the similarity between G and G0 , where nG and n0G are the sizes of node 
sets V and V0 , respectively. If a pair of correspondence ðvi 2 V; v0a 2 V0 Þ is 
matched, then zia ¼ 1; otherwise, zia ¼ 0. (zia is an element in the i-th 
row and a-th column of Z) A widely used objective function that mea-
sures the similarity is defined as, 

arg max
z

fz ¼ arg max
z

X

zia¼1
cVðvi; v

0

aÞ þ
X

zia ¼ 1
zjb ¼ 1

cEðeij; e
0

abÞ

¼ arg max
z

zT Az

(3a)  

s:t: z 2 f0; 1gnGn
G0 ;

XnG

i¼1
zia⩽1;

X
n

G0

a¼1
zia⩽1 (3b)  

where cVðvi; v
0

aÞ is a node similarity term and cEðeij; e
0

abÞ is an edge sim-
ilarity term; eij 2 E ðe0ab 2 E0 Þ; z is a nGnG0 � 1 vectorized replica of matrix 
Z; A is a symmetric affinity matrix, whose diagonal elements are 
assigned node similarities and non-diagonal elements are assigned edge 
similarities; Eq. (3b) enforces a one-to-one matching constraint. Based 

Fig. 1. A graph constructed by a point set, where the nodes represent points 
and the edges represent relations between points. 
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on the Taylor expansion, function fz can be approximated by, 

fz ¼ fz
k0
þ ðz � zk0 Þ

T Azk0 (4)  

where k0 is an iteration counter. Then, z can be optimized via an iteration 
procedure, 

zk0 þ1 :¼
Azk0

kAzk0 k2
(5)  

Algorithm 1. Point set graph matching   

Point set matching: After obtaining a subset S
0

based on the equal- 
length constraint, we build graphs G and G0 , where the correspondences 
belonging to S

0

are regarded as nodes and the linkages are edges. The 
edge similarity cEðeij; e

0

abÞ is defined as the exponential length difference, 

cEðeij; e
0

abÞ ¼ expð � ðkvi � vjk2 � kv
0

a � v
0

bk2Þ
2
Þ (6)  

The node similarity is difficult to measure and is not reliable. Hence, we 
set cVðvi;v

0

aÞ ¼ 0. The affinity matrix A is then constructed. Each element 
zia assigns a confidence score for a candidate match ðvi;v

0

aÞ. The score zia 

is updated by Eq. (5) where Az accumulates the weighted affinities (sum- 
pooling strategy). Here, we use a max-pooling strategy (Cho et al., 2014) 
instead of the sum-pooling strategy to update the confidence scores, 

zk0 þ1 :¼
A� zk0

kA� zk0 k2
(7)  

where 

ðA� zk0 Þia ¼
X

j2N i

max
b2N a

zjbCEðeij; e
0

abÞ (8)  

N i and N a are sets of neighbors of i and a, respectively. The max-pooling 
strategy, in essence, is to assign the best supporting matches for each 
candidate correspondence. Therefore, the strategy is able to suppress the 
noise arise from outliers. To prevent one-to-many or many-to-one 
matching, a final discretization step should be performed to enforce 
the one-to-one matching constraint. Specifically, we first binarize the 
confidence score matrix Z by using an adaptive thresholding method; 
then, each row and each column of Z are summed. If the sum of a row or 
a column is larger than 1, only the correspondence with the maximum 
score in this row or column is accepted as correct. The details of point set 
graph matching are summarized in Algorithm 1. 

There are two reasons why we choose graph matching rather than 

other methods for outlier filtering. First, graph matching can establish 
an optimal matching relationship and is not sensitive to outlier rates. In 
practice, graph matching is not very popular since its computational 
complexity is large. Fortunately, we adapt the graph matching in our 
GESAC. The node size of the graph is very small, i.e., m0

¼ jS
0

kj⩽m≪n. 
Thus, the graph can be efficiently optimized. Second, the equal-length 
constraint can be implicitly involved in the objective function. In rigid 
point set matching, the length between points is a relatively reliable 
metric. 

3.2.3. Shape-annealing robust estimate 
RANSAC and its variants use the least-squares cost for rigid trans-

formation estimation, which is extremely sensitive to outliers. This 
paper aims to solve the PCR problem with extreme amounts of outliers. 
The subset S00 cleaned by graph matching may still contain outliers. 
Once a good subset is generated, we want to ensure that the correct 
solution can be estimated since the number of required iterations to get a 
good subset is large. Our goal is to minimize the distances between 
matching points, while disabling spurious correspondences. The objec-
tive function is shown in Eq. (9), 
X

ðxi ;yiÞ2S
00

ρðkyi � ðRxiþ tÞk2Þ (9)  

where ri ¼ kyi � ðRxi þtÞk2 ¼ kυiþεik2 is the residual of ðxi; yiÞ and ρðriÞ

is a robust penalty function. The cost ρðriÞ reflects the amount of influ-
ence of a residual ri towards the optimization energy. For inliers, ri ¼

kεik2, which is very small compared with the residuals of outliers. Thus, 
the optimization energy is generally dominated by outliers. It is critical 
to adapt an appropriate robust penalty. In our GESAC, we use a robust 
cost with shape controlling (Barron, 2019), 

ρðri;αÞ ¼

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

1
2
ðri=cÞ2 if α ¼ 2

log
�

1
2
ðri=cÞ2 þ 1

�

if α ¼ 0

1 � exp
�

�
1
2
ðri=cÞ2

�

if α ¼ � ∞

jα � 2j
α

0

@

 
ðri=cÞ2

jα � 2j
þ 1

!α=2

� 1

1

A if α ¼ 1
4

h

(10)  

where α is a shape parameter; c is a constant scale parameter; and 
h 2 Z & h 6¼ 0 & h 6¼ 8. This robust cost is a generalization of tradi-
tional M-estimates such as least-squares cost, Cauchy cost, Welsch cost, 
etc. For example, if α ¼ 2, it is a least-squares cost; if α ¼ 0, it is a 

Fig. 2. Visualization of the generalized robust cost (a) and its weight function 
(b) with different shape controlling parameters. (c ¼ 1). 
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Cauchy estimate; if α ¼ � 2, it is a Geman-McClure estimate; and if α ¼
� ∞, it becomes a Welsch estimate. The generalized cost is visualized in 

Fig. 2(a). 
Like M-estimators, solving Eq. (9) is equivalent to solve a weighted 

least-squares (WLS) problem, minimizing the form of 
P

i
wir2

i . wi is a 

weight function, which is generally defined by wi ¼
∂ρ
∂ri
=ri, where ∂ρ

∂ri 
is the 

derivative of ρwith respect to the residual ri. Thus, the weight function of 
the generalized cost is, 

wðri; αÞ ¼

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

1
c2 if α ¼ 2

2
r2

i þ 2c2 if α ¼ 0

1
c2 exp

�

�
1
2
ðri=cÞ2

�

if α ¼ � ∞

1
c2

 
ðri=cÞ2

jα � 2j
þ 1

!ðα=2� 1Þ

if α ¼ 1
4

h

(11)  

Algorithm 2. Shape-annealing rigid model estimation  

Fig. 1(b) plots the weight function with different shape controlling 
parameters. As shown, least-squares cost gives uniform weights to all 
observations (both inliers and outliers). Robust costs (such as α ¼ 0;α ¼
� 2, and α ¼ � ∞) give large weights (close to 1) to observations with 

small residuals while giving small weights (close to 0) to observations 
with large residuals. Thus, robust costs can largely discount the effect of 
outliers towards to the total energy. 

Generally, the WLS problem is optimized by IRLS. In our optimiza-
tion, we do not fix a value for α. We anneal the shape of the weight 
function in the iteration procedure of IRLS. We call this strategy as 
shape-annealing robust estimate. From Fig. 2(b), we can see that large 
values of αmake the weight function smoother and more observations 
are allowed to take part in optimization. In contrast, the curve of the 
weight function becomes more pointy as αdecreases, which makes the 
parameter estimation more precise. Specifically, αis first set to 2 and is 
annealed every t ¼ 3 iterations over the values ½2; 1;1=2; 1=4;0; � 1=4;
� 1=2; � 1; � 2; � 4; � 8; � 16; � 32; � ∞�, where t is an interval of 

iterations to anneal the parameter α. The shape-annealing estimate is 
more robust than M-estimates, since the coarse-to-fine strategy can 
largely alleviate that the solver gets stuck in local minima. The shape- 
annealing robust estimate for rigid transformation estimation is 
summarized in Algorithm 2. 

Algorithm 3. GESAC  

3.2.4. Stopping criterion 
In RANSAC and its variants, the standard stopping criterion is based 

on the minimum number of required trials to ensure with confidence p0 
that at least one good subset (outlier-free) can be obtained. The pro-
posed GESAC also follows a similar criterion. In contrast to RANSAC, 
GESAC regards a subset with at least 3 inliers as good instead of outlier- 
free. Hence, a bad subset includes three cases, i.e., (1) 2 inliers and m � 2 
outliers, (2) 1 inliers and m � 1 outliers, (3) 0 inliers and m outliers. 
Suppose the true inlier rate of the initial correspondence set is η, then the 
probability to select a bad subset is, 

p ¼
mðm � 1Þ

2
η2ð1 � ηÞm� 2

þmηð1 � ηÞm� 1
þð1 � ηÞm (12)  

and the probability of drawing N bad subsets is pN. To ensure that at least 
one good subset is obtained, the probability pN should fall below a 
threshold ð1 � p0Þ, 

pN⩽ð1 � p0Þ⇔ N⩾
logð1 � p0Þ

logp
(13)  

In practice, confidence p0 is often set to 0.99 and the true inlier rate ηis 
unknown. Generally, ηis approximately computed based on the size of 
current maximum consensus set and updated as the iteration procedure 
progresses. Table 1 gives the minimum number of required trials N with 
respect to different sizes of m at an inlier rate of 0.01. Current RANSAC 
and its variants use a minimal subset for rigid transformation estimation 
(m ¼ 3). They require at least N ¼ 4605168 trials to obtain a good 
sample with confidence p0 ¼ 0:99. Our GESAC with m ¼ 32 only 

J. Li et al.                                                                                                                                                                                                                                         



ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 363–374

369

requires N ¼ 1151 trials if p0 ¼ 0:99, which is only 1/4000 of the ones 
of RANSAC variants. 

3.3. Computational complexity 

GESAC is a procedure with N iterations, whose inner loop consists of 
three main stages, including equal-length constraint, point set graph 
matching, and shape-annealing estimate. The details of GESAC are 
summarized in Algorithm 3. The equal-length constraint requires the 
construction of mðm � 1Þ=2 correspondence pairs for subset Sk. Its time 
complexity is Oðm2Þ. The computational complexity of point set graph 
matching is Oðk0m02l2Þ, where k0 is the average required number of it-
erations that the assignment vector z converges, m0 is the size of subset 
S
0

k, and l is the size of neighbor sets N i and N a. In the shape-annealing 
estimate, the complexity of Horn’s method, weight update, and residual 
computation is Oðm00Þ, where m00 is the size of subset S00k . Let the average 
required number of iterations be k00, then the total time complexity of the 
shape-annealing estimate is Oðk00m00Þ. The time complexity of consensus 
set computation in GESAC is OðnÞ. In GESAC, the equal-length constraint 
is applied N times, while point set graph matching and shape-annealing 
estimate are performed much less. Let the execution times of point set 

graph matching and shape-annealing estimation be N0 and N00, the total 

complexity of GESAC is O
�

m2Nþ k0m02l2N0

þ k00m00N00 þ nN00
�

. Since 

k00m00N00≪m2N, the complexity can be simplified as 

O
�

m2Nþ k0m02l2N0

þ nN00
�

. In the above, we have found that large 

values of m make the required number of trials N smaller. However, the 
value of m is not the larger the better. From the time complexity, 
although large m can reduce the number of trials N, it increases the value 
of m2 and the complexity of point set graph matching. 

4. Experiments and evaluations 

In this section, the proposed GESAC is comprehensively evaluated on 
both synthetic data and real point cloud datasets. First, a simulated 
coarse registration experiment is conducted to learn a reasonable value 
for the parameter m. Then, our GESAC is compared with seven other 
state-of-the-art algorithms, including RANSAC (Fischler and Bolles, 
1981), R-RANSAC (Matas and Chum, 2004), LO-RANSAC (Chum et al., 
2003), FLO-RANSAC (Lebeda et al., 2012), FGR (Zhou et al., 2016), 
super 4-points congruent sets (S4PCS) proposed by Mellado et al. 
(2014), Keypoint-based 4-points congruent sets (K4PCS) proposed by 
Theiler et al. (2014), and PointNetLK (Aoki et al., 2019). In our exper-
iments, the inlier threshold λis set to triple of the standard deviation of 
noise (or triple of the average point cloud resolution). For the Point-
NetLK, we use a pretrained model that was trained on the ModelNet40 
dataset.2 The experiments of PointNetLK are performed on a desktop PC 
with a GeForce GTX 1080Ti @ 11 GB GPU. PointNetLK can not deal with 
point clouds with large sizes. For example, it can only tolerate up to 40 K 
points per scan on a GPU with 10 GB memory. Thus, we downsample 
each scan of the ETH dataset to 40 K points based on a random sampling 
method. The detailed information (parameters, implementations, and 
inputs) of each algorithm is summarized in Table 2. Two widely used 
metrics for PCR problem are chosen for quantitative evaluation, i.e., 
rotation error δR and translation error δt, 

Fig. 3. The runtime results with respect to different values of m.  

Table 1 
Number of required trials N with respect to different m.  

m 3 8 14 20 26 32 38 

N 4605168 85385 13739 4587 2102 1151 707  

Table 2 
Detailed settings of the compared state-of-the-art algorithms.  

Method Parameters Implementation Input 

RANSAC Subset size m: 3; confidence p0: 0.99; maximum iterations: 105.  MATLAB code; single thread https://www.peterkovesi. 
com/matlabfns/index.html#robust 

Correspondences 

R-RANSAC Subset size m: 3; confidence p0: 0.99; Tðd;dÞ test: d ¼ 10; maximum iterations: 
105.  

MATLAB code; single threadhttps://www.peterkovesi. 
com/matlabfns/index.html#robust 

Correspondences 

LO-RANSAC Subset size m: 3; confidence p0: 0.99; maximum iterations: 105; local 
optimized size: jCkj=2; local optimized iterations: 10.  

MATLAB code; single thread https://zhipengcai.github.io/ Correspondences 

FLO- 
RANSAC 

Subset size m: 3; confidence p0: 0.99; maximum iterations: 105; local 
optimized subset size: 21; local optimized iterations: 50.  

MATLAB code; single thread https://zhipengcai.github.io/ Correspondences 

FGR Annealing rate: 1.2. Cþþ code; single thread https://github.com/intel-isl/ 
FastGlobalRegistration 

Correspondences 

S4PCS Overlapping ratio: 50%; subset size: 5000; registration accuracy: 0.1 m; 
maximum running time: 1000s. 

Cþþ code; single thread https://github.com/nmellado/ 
Super4PCS 

Point clouds 

K4PCS Overlapping ratio: 50%; score threshold: 0.001; registration accuracy: 0.1 m; 
maximum running time: 1000s. 

Cþþ code; single thread http://pointclouds.org/ ISS keypoints 

PointNetLK Training set: ModelNet40; Number of epochs: 200 Maximum number of points 
per scan: 40 K. 

Python; GPU (GTX 1080Ti 11 GB) https://github.com/ 
hmgoforth/PointNetLK 

Downsampled 
points 

Our GESAC Subset size m: 32; confidence p0: 0.99; maximum iterations: 105; maximum 
iterations of GM: 50; maximum iterations of IRLS: 100.  

MATLAB code; single thread https://www.researchgate. 
net/profile/Jiayuan_Li2 

Correspondences  

2 https://modelnet.cs.princeton.edu/. 
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8
><

>:

δt ¼ ktt � tek2

δR ¼ arccos
trðRtðReÞ

T
Þ � 1

2

(14)  

where Rt and Re are the true rotation matrix and the estimated one, 
respectively; trð⋅Þ is the trace of a matrix; tt and te are the true translation 
vector and the estimated one, respectively. δR measures the angular 
distance between Rt and Re, and δt is the Euclidean distance between tt 
and te. All the experiments except the PointNetLK are performed on a 
laptop with single CPU Core i7-8550U @ 1.8 GHz, and 8 GB of RAM. The 
source code will be made publicly available.3 

4.1. Parameter m study 

In GESAC, the choice of the parameter m is very important, influ-
encing the number of required trials and running time. Here, we select a 
reasonable value for m based on a synthetic PCR experiment. Specif-
ically, the input outlier contaminated correspondences M¼ ðX ;YÞ are 
generated as follows: Given an outlier rate rout and the number of inliers 
nin, the number of initial correspondences is computed by n ¼
nin=ð1 � routÞ. First, we randomly generate nin points X in ¼ fxig

nin
1 in R3 

using a normal distribution Nð0;1002Þ. These points are transformed to 
another local coordinate system via transformation yt

i ¼ Rtxi þ tt, 
obtaining their correspondences Yt

in ¼ fyt
ig

nin
1 , where the ground truth 

rotation matrix Rt is a randomly generated 3� 3 Rodrigues matrix 
(rotation angles are within ½ � π=2; π=2�) and the ground truth trans-
lation tt is a randomly generated 3� 1 vector whose elements are 
distributed in [-100, 100]. To make the simulation more realistic, 
Gaussian noise Nð0;0:12Þ is then added to Yt

in, obtaining the inlier 
correspondence set Min ¼ ðX in;YinÞ. Finally, two sets of 3D points with 
size n � nin are randomly generated using a normal distribution Nð0;
1002Þ, obtaining outlier correspondence set Mout ¼ ðXout ; YoutÞ. The 
inlier set Min and outlier set Mout are merged to obtain the initial cor-
respondence set M. In our experiment, we fix the number of inliers to 80 

and sequentially increase the outlier rate rout ([0, 20%, 40%, 60%, 80%, 
85%, 90%, 95%, 99%]). 

Values above 3 for parameter m have almost no influence on the 
registration accuracy of our GESAC. The value of m influences the value 
of N and affects the time complexity. Thus, we study the running time of 
the proposed GESAC with respect to different values of m. The results are 
plotted in Fig. 3, where each reported value is the average of 1000 in-
dividual tests. As shown, when the outlier rate is low (lower than 60%), 
the smaller the value of m, the faster the running speed; however, when 
the outlier rate is high (higher than 60%), the results are completely 
opposite. Therefore, neither a very large value nor a very small value of 
m is a good choice. This conclusion can also be inferred from the 
expression of the computational complexity. When the outlier rate is 
low, the required number of trials N is small. In this case, increasing the 

value of m will largely increase the complexity of O
�

k0m02l2N0
�

. In 

contrast, when the outlier rate is high, the term O
�
m2N

�
is the dominant 

one. Based on the analysis in the above, parameter m is set to 32 in all the 
following experiments. 

4.2. Evaluations on simulated data 

The simulation process is the same as for the study of parameter m. 
Since we simulate correspondence set M¼ ðX ;YÞ instead of point 
clouds as input, this section only compares the proposed GESAC with 
correspondence-based registration algorithms in Table 2, including 
RANSAC, R-RANSAC, LO-RANSAC, FLO-RANSAC, and FGR. An ortho-
normal matrix algorithm is used in RANSAC-type methods for close- 
form rigid transformation estimation. Fig. 4 reports the average quan-
titative results. 

As shown in Fig. 4 and Fig. 4(b), RANSAC-type methods achieve 
similar registration accuracies. They perform very well before the outlier 
rate reaches 95%. However, if the outlier rate is extremely high, they 
often fail to find a correct solution within 105 trials. We regard a 
registration test with δR < 1� and δt < 0:5 m as a successful one. Then, at 
an outlier rate of 99%, the success rates of RANSAC (9.6%), R-RANSAC 
(2.1%), LO-RANSAC (14.8%), and FLO-RANSAC (14.8%) are all lower 
than 20%. FGR performs the worst, whose registration accuracy is 
almost always the lowest. The model fitting in FGR is sensitive to 

Fig. 4. Comparisons on the simulated data. Subfigures (a), (b), and (c) plot the rotation errors, translation errors, and runtime, respectively. The horizontal axis is the 
outlier rate (0–99%) and the vertical axis is the accuracy metrics or runtime. 

Table 3 
Detailed information about the ETH dataset.  

Info Arch Courtyard Facade Office Trees 

Overlap 30–40% 40–70% 60%e70%  >80% �50%  
N pair  8 28 21 8 10 

N point  27423 K 12194 K 17343 K 10721 K 20248 K 

N key  22281 15795 8175 4906 15858 

jMj 15975 33991 15545 11628 22264  

3 http://www.escience.cn/people/lijiayuan/index.html. 

J. Li et al.                                                                                                                                                                                                                                         



ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 363–374

371

Fig. 5. Evaluations on the challenging ETH dataset. Subfigures (a)–(e) plot the comparison results on the Arch, Courtyard, Facade, Office, and Trees, respectively. 
The rotation error δR is reported in the left and the translation error δt is displayed in the right. The scan pair ID is an identifier for each LiDAR scan pair. 
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outliers, i.e., the fitting accuracy severely decreases as the outlier in-
creases. Therefore, FGR is not suitable for cases with extreme amounts of 
outliers. In contrast, the proposed GESAC performs the best among these 
six methods, which can tolerate extremely high outlier rates. Its success 
rate is 100% at an outlier rate of 99%, and its δR and δt are 0.008� and 
0.018 m on average, respectively. Although GESAC is also a RANSAC 
variant, its registration accuracy is slightly better than the compared 
RANSAC-type methods. The reason may be twofold: First, GESAC uses 
large subsets for model estimation. There are many redundant obser-
vations, which improve the robustness to noise. Second, GESAC uses a 
robust cost instead of least-squares cost. The robust cost can give large 
weights to correspondences with small residuals while giving small 
weights to the ones with large residuals. 

Fig. 4(c) shows the results of runtime. As shown, GESAC is compa-
rable with RANSAC-type methods at low outlier rates. However, if the 
outlier rate is high, RANSAC-type methods become much slower than 
the proposed method. For example, GESAC is 420 þ times faster than 
RANSAC when the outlier rate is 99%. If we set the minimum number of 
required trials to 4:6� 106, GESAC will be 4000 þ times faster than 
RANSAC. Although FGR is implemented by Cþþ code, it is still 60 þ
times slower than the proposed GESAC. 

4.3. Evaluations on challenging real data 

GESAC is also evaluated on a large-scale challenging real world 
dataset, i.e., the ETH LiDAR dataset4. This dataset consists of five cate-
gories, including Arch, Courtyard, Facade, Office, and Trees, each of 
which contains multiple LiDAR scan pairs. The ISS (Zhong, 2009) de-
tector is used to extract features and the FPFH (Rusu et al., 2009) is used 
as a feature descriptor5. We use a strategy that is similar to (Cai et al., 

2019; Li et al., 2020) for the initial correspondence set M¼ ðX ;YÞ
establishment. Specifically, a correspondence ðxi; yiÞ is selected into M
only if xi and yi are one of the top-5 best matches to each other. The 
detailed information about the ETH dataset is summarized in Table 3, 
including overlapping ratios, number of scan pairs N pair, average 
number of points in a scan N point , average number of keypoints N key, and 
average number of correspondences jMj. The ETH dataset contains 
ground truth, where each scan pair is associated with a true rigid 
transformation ðRt ; ttÞ. A correspondence is an inlier only if it satisfies 
kyt

i � ðR
txi þ ttÞk2 < λ. The inlier threshold λis set to three times the 

average resolution. It is very challenging to register the ETH dataset, 
since the outlier rates of the correspondence sets are extremely high. The 
outlier rates of the Arch, Courtyard, Facade, Office, and Trees datasets 
are 99.53%, 98.01%, 98.50%, 99.14%, and 99.64%, respectively. In this 
dataset, point clouds are available. Hence, we add three more state-of- 
the-art algorithms for comparison, i.e., S4PCS (Mellado et al., 2014), 
K4PCS (Theiler et al., 2014), and PointNetLK (Aoki et al., 2019), which 
are not based on correspondences. 

Fig. 5 shows the quantitative result of each LiDAR scan pair (the 
Courtyard and Facade datasets contain many pairs and only partial of 
them are displayed). As shown, RANSAC-type methods except R-RAN-
SAC can obtain good results on most of scan pairs of the Courtyard and 
Facade datasets. However, RANSAC-type methods are not suitable for 
cases with extreme amounts of outliers. None of them perform well on 
the Arch and Trees datasets. Their rotation errors are even larger than 
100�. Again, the model estimation of FGR is sensitive to heavy outliers. 
S4PCS is comparable with RANSAC-variants. It is even better than LO- 
RANSAC and FLO-RANSAC on the Arch and Office datasets. Essen-
tially, 4PCS and its variants are also RANSAC-based, since their main 
framework is based on a similar hypothesize-and-verify technique used 
in RANSAC. K4PCS performs worse than S4PCS. S4PCS uses point clouds 
as input while K4PCS uses ISS keypoints. Thus, the reason may be that 
the keypoints are too sparse to find accurate and reliable 4PCS bases. 
PointNetLK gets the worst results on the ETH dataset, which cannot 

(a) Arch (b) Courtyard (c) Façade (d) Office (e) Trees

Fig. 6. Complete registration results. First row is the input LiDAR scans, where Arch contains 5 scans, Courtyard contains 8 scans, Facade contains 7 scans, Office 
contains 5 scans, and Trees contains 6 scans. Different scans are represented by different colors. As shown, the input point clouds are messy. Second row shows the 
registration results of GESAC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Average rotation error δR [�] results on the ETH dataset.  

Method Arch Courtyard Facade Office Trees 

RANSAC 76.89 4.45 0.64 47.65 43.22 
R-RANSAC 77.37 13.18 18.88 102.11 103.24 

LO-RANSAC 76.84 3.56 0.24 64.01 32.15 
FLO-RANSAC 76.84 3.84 0.25 64.45 48.48 

FGR 32.71 2.32 2.97 85.52 39.65 
S4PCS 2.13 0.46 1.32 1.18 7.89 
K4PCS 28.67 0.74 16.73 1.17 25.13 

PointNetLK 69.14 32.60 23.70 116.82 88.31 
Our GESAC 0.12 0.04 0.05 0.25 0.21  

4 http://www.prs.igp.ethz.ch/research/completed_projects/automatic_regis-
tration_of_point_clouds.html  

5 ISS and FPFH are implemented based on PCL: http://pointclouds.org/ 
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successfully register any scan pairs. The reason is that the generalization 
ability of PointNetLK is poor. The model trained on the ModelNet40 can 
not be adapted in the ETH dataset, because the ModelNet40 is a small- 
scale dataset (single object in a scan) while the ETH dataset is 
captured in large-scale outdoor scenes. In contrast, our proposed GESAC 
achieves the best performance, i.e., both the rotation errors and trans-
lation errors are the lowest on most of the pairs. Even in extremely 
difficult cases (e.g., the Arch and Trees datasets), GESAC still obtains 
very good registration accuracy. The largest rotation error and trans-
lation error of GESAC are only 0.60� and 0.19 m, respectively. 

In GESAC, we design a two-stage outlier filtering strategy (equal- 
length constraint and point set graph matching), which is able to iden-
tify good subsets. The hypothesize-and-verify framework and robust cost 
ensure that satisfactory solutions can be found. These make the pro-
posed GESAC is robust. In addition, GESAC adapts a shape-annealing 
estimate, which gives large weights to small residuals while giving 
small weights to large residuals. It is thus less sensitive to noise, espe-
cially non-Gaussian noise. Thus, it has a higher model fitting accuracy 
than traditional least-squares that is used in RANSAC. Fig. 6 shows the 
complete registration result of GESAC on each scan category. 

Table 4 and Table 5 summarize the average rotation error and 
translation error of each category, respectively. The rotation errors of 
RANSAC-type methods except R-RANSAC on the Facade dataset is less 
than 1�. S4PCS and K4PCS perform better than RANSAC on the Court-
yard and Office datasets. The proposed GESAC can almost be directly 
adopted in practical applications without any post-processing such as 
fine registration. Even on the extremely difficult cases with 99.64% of 
outliers (the Trees dataset), GESAC still achieves a high registration 
accuracy, i.e., 0.21� and 0.05 m, which is much superior to others. The 
success rate (the criterion is δR < 2� and δt < 1m) of GESAC (100%) is 
much higher than the ones of RANSAC (54.67%), R-RANSAC (22.67%), 
LO-RANSAC (64%), FLO-RANSAC (60%), FGR (20%), S4PCS (78.67%), 
K4PCS (66.67%), and PointNetLK (0%). 

The running times are reported in Table 6. Note that the reported 
values do not contain the running time of feature extraction. From the 
table, we can see that the proposed GESAC is very efficient. It is the 
fastest among the CPU based methods. It is 2800 þ and 770 þ times 
faster than RANSAC on the Courtyard and Facade, respectively. Even on 
the Arch, our method is still 139 þ times faster than RANSAC. Although 
FGR, S4PCS, and K4PCS are implemented by Cþþ, GESAC is still two to 

four orders of magnitude faster than them. PointNetLK is the fastest 
since it is a GPU implementation. We also test the CPU implementation 
of PointNetLK, which costs about 10 s on the ETH dataset with a much 
better CPU (CPU Core i7-7800X @ 3.50 GHz). Actually, the computation 
of GESAC can be sped up several orders of magnitude with a GPU 
implementation as it is highly parallelizable. 

4.4. Limitations 

The limitations of the proposed GESAC are twofold: (1) the equal- 
length constraint holds only if point clouds do not have scale differ-
ences, i.e., the proposed two-stage filtering strategy is only suitable for 
cases with rotation and translation changes. Therefore, the proposed 
GESAC is not suitable for registration of point clouds with unknown 
scales or non-rigid transformations. For example, our GESAC can not be 
directly applied to register a photogrammetric point cloud and a LiDAR 
point cloud. The photogrammetric point cloud should be scaled to have 
the same metric with the LiDAR point cloud before registration. (2) our 
GESAC is designed specifically for PCR problem. It is not a general 
method like RANSAC which can also be applied to other robust esti-
mation problems, such as line fitting. Moreover, if the number of true 
inliers in initial correspondence set is too low (such as < 10), our GESAC 
may fail. 

5. Conclusions 

In this paper, we develop an accurate, fast, and robust 
correspondence-based coarse registration method for point cloud 
registration (PCR). The proposed method named GESAC can be regarded 
as a RANSAC variant. Compared with current RANSAC-type methods, 
we use a much larger subset instead of a minimal subset for model 
estimation and allow outliers in the subset. This is substantially different 
from current RANSAC variants, since they only regard outlier-free sub-
sets as good ones. GESAC has a much higher probability to obtain good 
subsets than RANSAC variants. It only requires 1/4000 of number of 
trials that is required by RANSAC. We design a two-stage filtering 
strategy to identify good subsets. Specifically, an equal-length constraint 
is first presented to filter “degraded” subsets; then, a max-pooling graph 
matching method is adapted to remove potential outliers in the “non- 
degraded” subsets. Once a potential good subset is obtained, GESAC uses 

Table 5 
Average translation error δt [m] results on the ETH dataset.  

Method Arch Courtyard Facade Office Trees 

RANSAC 17.07 2.31 0.06 2.44 9.05 
R-RANSAC 13.53 12.44 3.36 7.67 15.66 

LO-RANSAC 17.09 1.90 0.03 2.73 8.50 
FLO-RANSAC 17.10 2.05 0.03 3.67 9.21 

FGR 10.18 2.30 0.91 3.53 8.67 
S4PCS 1.02 0.34 0.32 0.13 3.21 
K4PCS 11.57 0.59 3.05 0.09 5.54 

PointNetLK 23.29 19.64 10.89 9.06 10.09 
Our GESAC 0.04 0.03 0.01 0.03 0.05  

Table 6 
Average runtime [s] results on the ETH dataset.  

Method Arch Courtyard Facade Office Trees 

RANSAC 239.82 317.72 194.72 352.96 314.93 
R-RANSAC 201.82 127.23 112.68 95.47 204.62 

LO-RANSAC 226.93 318.12 197.11 364.69 302.92 
FLO-RANSAC 232.91 317.96 197.70 360.90 316.19 

FGR 47.93 91.72 38.35 44.39 55.22 
S4PCS 813.05 705.58 737.55 1000 1000 
K4PCS 775.66 388.03 1000 89.95 1000 

PointNetLK 0.58 0.56 0.50 0.52 0.58 
Our GESAC 1.71 0.11 0.25 0.71 1.77  

J. Li et al.                                                                                                                                                                                                                                         



ISPRS Journal of Photogrammetry and Remote Sensing 167 (2020) 363–374

374

a shape-annealing robust estimate instead of classic least-squares for 
rigid transformation estimation. These three improvements ensure the 
high robustness of GESAC. Extensive simulated and real experiments 
demonstrate that GESAC is much superior to current methods, i.e., it is 
able to tolerate extremely high outlier rates (e.g., higher than 99%) and 
is several orders of magnitude faster than RANSAC-variants at high 
outlier rates. 
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