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A B S T R A C T

False match removal is a crucial and fundamental task in photogrammetry and computer vision. This paper
proposes a robust and efficient mismatch-removal algorithm based on the concepts of local barycentric co-
ordinate (LBC) and matching coordinate matrices (MCMs), called locality affine-invariant matching (LAM). LAM
is suitable for both rigid and nonrigid image matching problems. We define a novel LBC system based on area
ratios, which is invariant to local affine transformations. We also present the MCMs based on the coordinates of
matches, whose degeneracy is able to indicate the correctness of correspondences. Our LAM method first builds a
mathematical model based on the LBCs to extract good matches that preserve local neighborhood structures.
Then, LAM constructs local MCMs using the extracted reliable correspondences and identifies the correctness for
the remaining matches via minimizing the rank of the MCMs. LAM has linear space and linearithmic time
complexities. Extensive experiments on both rigid and nonrigid real datasets demonstrate the power of the
proposed method; i.e., LAM is more robust to complex transformations compared to other methods and is two
orders of magnitude faster than RANSAC under low inlier rates. The source code of the proposed LAM method
will be publicly available in http://www.escience.cn/people/lijiayuan/index.html.

1. Introduction

Mismatch removal has many applications in photogrammetry and
computer vision, such as structure-from-motion (Wu, 2013), simulta-
neous localization and mapping (SLAM) (Mur-Artal et al., 2015), image
retrieval (Murala et al., 2012), and panoramic image registration
(Brown and Lowe, 2007). Its goal is to distinguish inliers from outliers
in the initial correspondence set which is obtained by feature detection
and description methods, e.g., the scale-invariant feature transform
(SIFT) (Lowe, 2004).

Mismatch removal is still a very challenging problem, although a
large number of methods have been proposed in the past few decades
(Li et al., 2017a; Ma et al., 2015). It still suffers several difficulties. First,
images captured under complex scene conditions may suffer from ser-
ious radiation and geometric distortions, which inevitably lead to a
large proportion of outliers. Such high outlier ratios bring a great
challenge to traditional methods, such as RANSAC-type algorithms
(Chum and Matas, 2005; Fischler and Bolles, 1981; Torr and Zisserman,
2000). Second, the geometric transformations between image pairs are
various. It is difficult to propose a general framework for both global
transformations and complex nonrigid deformations. For example,
traditional robust estimators and RANSAC-type methods are only

suitable for global transformations. Third, real-time performance is
rarely achieved, especially for nonrigid images. Nonrigid image
matching methods, such as graph matching (Conte et al., 2004), usually
have a very high computational complexity, which largely limits their
usage in real-world applications.

In this paper, we propose a robust and efficient false match removal
algorithm, called locality affine-invariant matching (LAM), to cope with
the abovementioned difficulties. LAM is based on the observation that
local structures inside an image are still preserved after nonrigid
transformations. Namely, the relationships between small local regions
inside an image pair can still be well modeled by affine or homography
transformations. To make full use of the neighborhoods of a corre-
spondence, we present a new local barycentric coordinate (LBC). The
LBC is defined by normalized area ratios and is invariant to affine
transformations. It is more suitable for feature matching tasks than
Cartesian coordinates, since false matches should not have the same
LBC, while correct matches may have the same LBC. In addition, the
LBC is robust to nonrigid deformations. Hence, LAM first builds a
mathematical model based on the LBC to extract good matches that
preserve local neighborhood structures. The limitation of this stage is
that it may miss some good matches with false neighborhood corre-
spondences. Fortunately, we also define a matching coordinate matrices
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(MCMs) based on the coordinates of matches. LAM constructs local
MCMs using the extracted reliable correspondences and identifies the
correctness for the remaining matches by minimizing the rank of the
MCMs. Our LAM method can be solved with linear space and linear-
ithmic time complexities. Extensive experiments on real data demon-
strate the power of the proposed LAM method, i.e., LAM is more robust
than the compared state-of-the-art methods and is two orders of mag-
nitude faster than RANSAC under low inlier rates (Fischler and Bolles,
1981).

There are two main contributions in our paper. First, we present a
new LBC system and adapt it into a local structure-preserving mathe-
matical model for robust feature matching. In contrast to traditional
methods that rely on a global transformation, our LAM method is also
suitable for complex nonrigid transformations. Second, we define a
novel concept of the MCMs. Based on the rank deficient property of the
MCMs, we can identify the correctness of the remaining matches.
Hence, LAM is able to extract as many good matches as possible from
the initial correspondence set.

2. Related work

We briefly review the outlier removal methods in feature matching.
According to the types of deformations between image pairs, we
roughly classify these methods into two groups, i.e., methods for rigid
deformations (rigid methods) and methods for nonrigid deformations
(nonrigid methods).

2.1. Rigid methods

Here, we regard global geometric transformations, such as simi-
larity, affine, and perspective transformations, as rigid deformations.
Traditional rigid methods include hypothesize-and-verify methods and
robust estimator methods. Recently, deep learning-based methods have
also shown their potential.

2.1.1. Hypothesize-and-verify techniques
The most popular hypothesize-and-verify method is the RANSAC

method, which alternates between transformation estimation using
minimum subset sampling and geometric model verification. The geo-
metric model with the largest supporting correspondence set will be
accepted as the optimal solution. RANSAC has many variants, such as
MLESAC (Torr and Zisserman, 2000), LORANSAC (Chum et al., 2003),
PROSAC (Chum and Matas, 2005), USAC (Raguram et al., 2013), and
DSAC (Brachmann et al., 2017). The major limitations common to
RANSAC-type methods are two-fold. On the one hand, RANSAC-type
methods are sensitive to the outlier ratios as pointed out by (Li and Hu,
2010). On the other hand, RANSAC-type methods are no guarantee of
the optimality of the estimated solutions (Chin and Suter, 2017).

2.1.2. Robust estimators
These methods treat a mismatch removal task as a robust regression

problem. The advantages of these methods are the efficiency and a
guarantee of an optimal solution. M-estimators (Huber, 1981; Maronna
et al., 2006; Rousseeuw and Leroy, 1987) constitute a widely used ro-
bust regression technique. However, M-estimators inherently suffer
from a breakdown point of 0.5. Namely, M-estimators will fail if the
mismatch ratio is larger than 50%. Recently, an lq estimator ( < <q0 1)
(Li et al., 2016; Li et al., 2017c) was proposed for robust feature
matching. The lq estimator uses an lq-norm instead of an l2-norm in the
cost function and optimizes the cost via the alternating direction
method of multipliers (ADMM) (Boyd et al., 2011). This method over-
comes the limitation of M-estimators and greatly improves the break-
down point. Lin et al. (Lin et al., 2018) proposed a nonlinear regression
technique called coherence-based decision boundaries (CODE), which
is based on the observation that correct matches tend to be coherent
while outliers are randomly scattered. As reported, CODE is still robust

under 90% of outliers.

2.1.3. Deep learning methods
More recently, researchers have attempted to adapt deep learning

techniques to geometric processing. Rocco et al. (2017) developed an
architecture that performs in a bottom-up manner similar to the Hough
voting technique. It uses early convolutional layers to generate candi-
date transformations, and adopts later layers to aggregate the votes. Yi
et al. (2018) proposed an end-to-end architecture to label the initial
match set as outliers or inliers. The loss function of the training network
consists of two terms. One term is the classification loss, whose role is to
reject outliers; another term is a regression loss, which can predict the
essential matrix. However, this method requires knowledge of the in-
trinsics of images.

2.1.4. Other methods
Cai et al. (2018) proposed a novel deterministic optimization al-

gorithm, called iterative biconvex optimization (IBCO), which performs
a deterministic search on an initial consensus solution. In another work
by the same research team (Chin et al., 2015), the maximum consensus
problem is transformed into a tree-search problem. They integrated the
A* search algorithm into the framework of LP-type methods. The lim-
itation common to these methods is that they are very slow.

2.2. Nonrigid methods

Unlike rigid methods, nonrigid methods are able to cope with more
complex deformations, including both rigid deformations and nonrigid
deformations. Graph matching methods, nonparametric interpolation
methods, and local geometric prior-based methods are the three types
of typical nonrigid methods.

2.2.1. Graph matching methods
These methods usually organize the two sets of feature points as

graphs and minimize their structural distortions via an energy function
(Conte et al., 2004). Several representative works include integer pro-
jected fixed-point (Leordeanu et al., 2009), tensor matching (Duchenne
et al., 2011), reweighted random walk (Cho et al., 2010), minimum
spanning tree induced triangulation (Lian et al., 2012), and max-
pooling matching (Cho et al., 2014). Graph matching methods do not
rely on the assumption that the nonrigid transformation obeys smooth
and slow motion. Thus, these methods can achieve good performance
even if an image pair undergoes multiple geometric modeling. How-
ever, graph matching is an NP-hard problem. Its time and space com-
plexities are very large, which largely limits the permissible size of
input graphs (Li et al., 2017a, 2017b).

2.2.2. Nonparametric interpolation methods
In many cases, the motion field of feature matches is smooth and

slow. Hence, the nonrigid transformation can be approximately inter-
polated by a nonparametric function. Based on this observation, many
effective methods have been developed, including vector field con-
sensus (VFC) (Ma et al., 2013), Gaussian mixture models (GMM) (Jian
and Vemuri, 2011), spatially constrained Gaussian fields (Wang et al.,
2017), identifying correspondence function (ICF) (Li and Hu, 2010),
and coherence point drift (CPD) (Myronenko and Song, 2010). How-
ever, if the motion field of point correspondences does not obey the
“slow and smooth” principle, the performance of these methods will
drop rapidly. In addition, they suffer from a similar limitation with
graph matching, i.e., being time consuming. Hence, they are not sui-
table for real-time applications such as SLAM.

2.2.3. Local geometric prior-based methods
Li et al. (2017b) proposed a support-line voting strategy based on

the neighborhoods of correspondences and used affine-invariant ratios
to filter outliers. They also proposed a local region descriptor based on a
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4-point local structure (Li et al., 2017a). These methods achieve very
good performance since they consider both photometric and geometric
properties inside a small local region. However, the consideration of
photometric constraints inevitably increases the computational com-
plexity. Ma et al. (2017) proposed a locality preserving matching (LPM)
method based on the observation that the spatial distribution of the
neighborhoods of a correct correspondence should be preserved. They
gave a mathematical model and derived a closed-form solution. Bian
et al. (2017) developed a grid-based motion statistics (GMS) method
based on the piecewise smoothness assumption. The GMS method first
divides images into small grids and calculates the number of neigh-
borhood matches. Then, it uses the statistical likelihoods to distinguish
inliers from outliers. Both the LPM and GMS methods are very efficient
and suitable for real-time tasks. However, they only exploit a weak local
geometric constraint, which makes it difficult to separate the true in-
liers from relatively low-precision noisy matches.

3. Methodology

3.1. Local barycentric coordinate (LBC)

Here, we first give the definition and properties of LBC. Suppose we
are given a feature point p1 and its neighborhood points p p p, ,2 3 4. Any
three points of p p p p, , ,1 2 3 4 are not collinear (see Fig. 1). Thus, point p1
can form three triangles ( )S S S, ,p p p p p p p p p1 2 3 1 2 4 1 3 4 with p p p, ,2 3 4.

Definition 1 (Local barycentric coordinate (LBC)).

= ( )s
S S S( , , ) 1 · , ,

sum
p p p p p p p p p1 2 3 1 2 3 1 2 4 1 3 4 (1)

are called the LBC of point p1, where = + +s S S Ssum p p p p p p p p p1 2 3 1 2 4 1 3 4.

Theorem 1. LBC is invariant under affine transformation. If points
p p p p, , ,1 2 3 4 are transformed to q q q q, , ,1 2 3 4 by an affine transformation
A. Points q q q q, , ,1 2 3 4 form triangles ( )S S S, ,q q q q q q q q q1 2 3 1 2 4 1 3 4 . Then, we
have,

=( , , ) ( , , )1 2 3 1 2 3 (2)

where ( , , )1 2 3 are the LBC of point q1.

Proof. As known, affine transformation has three invariants, i.e.,
parallel lines, ratios of lengths of parallel line segments, and ratios of
areas. After affine transformation, areas are scaled by a factor of

×Adet( )2 2 , thus,

= = =×A
S
S

S
S

S
S

det( ) q q q

p p p

q q q

p p p
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2 2
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1 3 4

1 3 4 (3)

According to the definition of LBC and Eq. (3), we have,

=

=

=

=
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×
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· , ,
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A

A
A

1 2 3
1

det( )

det( )
det( )·

1 2 3

sum

sum

sum

1 2 3 1 2 4 1 3 4

2 2
1 2 3 1 2 4 1 3 4

2 2
2 2 1 2 3 1 2 4 1 3 4

(4)

= + +s S S Ssum q q q q q q q q q1 2 3 1 2 4 1 3 4

LBC is very suitable for robust feature matching tasks, which is
much superior to Cartesian coordinates. Because LBC is invariant to
affine transformation, the two feature points of a correct match should
have the same LBC. In contrast, the two features of a mismatch usually
have different LBCs. In addition, LBC is a local coordinate, which is not
sensitive to nonrigid transformations. Hence, LBC is suitable for both
rigid and nonrigid image matching problems. Based on such properties,
we can easily distinguish outliers from inliers.

3.2. Matching coordinate matrices (MCMs)

Given K point correspondences x x{( , )}i i
K
1 , where =x [x ,y ]i i i

T and
=x [x ,y ]i i i

T. The geometric relationship between these two point sets
x{ }i K

1 and x{ }i K
1 can be exactly modelled by an affine transformation A.

Definition 2 (matching coordinate matrices (MCMs)).

= = = =M
X
X
X
1

M
X
X
X
1

x ,x ,x
x ,x ,x
y ,y ,y
1, 1 ,1

,

y ,y ,y
x ,x ,x
y ,y ,y
1, 1 ,1

x

x

x
y

1 2 k
1 2 k

1 2 k
y

y

x
y

1 2 k
1 2 k

1 2 k

(5)

Mx and My are called the MCMs.

Theorem 2. Mrank( ) 3x , Mrank( ) 3y ; and =M Mdet( ) 0x x,T ,
=M Mdet( ) 0y y,T .

Proof. There exists an affine transformation = ×A (a )ij 2 3 between x{ }i K
1

and x{ }i K
1 , namely,

= + +
= + +

x a x a y a
y a x a y a

i 11 i 12 i 13

i 21 i 22 i 23 (6)

Then, writing the above 2 k equations in a vector form, we have,

= + +
= + +

M M M M
M M M M

a a a
a a a

1
x

11 2
x

12 3
x

13 4
x

1
y

21 2
y

22 3
y

23 4
y

(7)

where Mi
x, =M (i 1, 2, 3, 4)i

y are the i-th row of Mx and My,
respectively. As shown, the rows of Mx and My are linearly
dependent. Thus, Mrank( ) 3x , Mrank( ) 3y ; and =M Mdet( ) 0x x,T ,

=M Mdet( ) 0y y,T .

Suppose we have obtained the MCMs Mx, My and a point
=x [x ,y]j j j

T; now we show how to exactly predict the corresponding
point =x [x ,y ]j j j

T of xj. For Mx, it is easy to append columns, since each
column is formed by the coordinates of one correspondence. Thus,
appending =m x[x ; ; 1]j j j to Mx, we get a new MCM =M m M[ , ]j

x
j

x . The
rank of Mj

x should also be smaller than 4 and the determinant of M Mj
x

j
x,T

should be zero, because there are no noises and outliers in the ob-
servations. In Mj

x, xj is an unknown variable. If the value of xj deviates
from its ground truth value, matrix Mj

x becomes full rank, which is
reflected sensitively by M Mdet( )j

x
j
x,T . However, real observation data

usually contain noises, the determinant of M Mj
x

j
x,T cannot be zero.

Fortunately, matrix M Mj
x

j
x,T is a positive definite matrix, namely,

>M Mdet( ) 0j
x

j
x,T . Thus, we can estimate xj by minimizing the following

cost,

= M Mx argmindet( )j
x

j
x

j
x,T

j (8)

Fig. 1. The invariant of LBCs. Given a feature point p1 and its neighborhood
points p p p, ,2 3 4, p1 forms three triangles with p p p, ,2 3 4, and we define the LBC
of p1 as the area ratios of these triangles. q q q q, , ,1 2 3 4 are the correspondences of
p p p p, , ,1 2 3 4 after affine transformation A. Therefore, the LBC of p1 is equal to
the LBC of q1.
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where x j represents the optimal solution of xj.
Let us first expand the term M Mdet( )j

x
j
x,T and obtain,

= +M M m m M Mdet( ) det( )j
x

j
x,T

j j
T x x,T (9)

Due to the noises in real data, Mx is also a full rank matrix and
M Mx x,T is also positive definite. Therefore, we can find a 4 × 4 in-
vertible matrix V x, which satisfies,

=V M M V I( )x x x,T x,T (10)

Then, Eq. (9) becomes,

=
+

M M
V m V m I

V
det( )

det(( )( ) )
(det( ))j

x
j
x,T

x
j

x
j

T

x 2 (11)

Based on the theory of Sylvester's determinant identity, Eq. (11) can
be reformulated as,

= +

= +

= +m

M M V m V m I

V m V m

V V m

det( ) ·[det(( )( ) )]

·[det(( ) ( ) 1)]

·[ 1]

T

j
T

V

V

V

j
x

j
x,T 1

(det( ))
x

j
x

j
T

1
(det( ))

x
j

x
j

1
(det( ))

x,T x
j

x 2

x 2

x 2 (12)

From Eq. (10), we get =V V M M( )x,T x x x,T 1. Let,

= = ×V V U (u )x,T x x
ij
x

4 4 (13)

Hence, minimization of M Mdet( )j
x

j
x,T is equal to minimize,

=

= + + +u

m V V m x U xmin( ) min([x ; ; 1] [x ; ; 1])

min( x 2(u x u y u ) x )
x

j
T x,T x

j
x

j j
T x

j j

x
11
x

j
2

12
x

j 13
x

j 14
x

j

j j

j (14)

It is a quadratic function of xj and its minimizer is,

=
+ +

x
(u x u y u )

uj
12
x

j 13
x

j 14
x

11
x (15)

Similarly, the yj can be estimated by,

=
+ +

y
(u x u y u )

uj
12
y

j 13
y

j 14
y

11
y (16)

Then, we can identify whether the correspondence is an inlier or an
outlier by comparing =x [x ,y ]j j j

T with =x [x ,y ]j j j
T.

3.3. Locality invariant matching

In this section, we develop a robust locality invariant matching
method based on LBC and MCMs. Suppose we are given a set of initial
feature correspondences =M x ,x{( )}N

i i 1 , where =x [x ,y ]i i i
T and

=x [x ,y ]i i i
T are image coordinates in the reference image IR and the

target image IT , respectively. The initial feature correspondences are
usually extracted by the similarity of feature descriptors, such as the
SIFT descriptor. Due to the influence of geometric and radiation dis-
tortions, the initial feature correspondence set M inevitably suffers
from noises and outliers. Hence, our goal is to distinguish the inliers
from the outliers in M and extract the inlier set I .

Traditional outlier removal methods, such as RANSAC-type methods
and M-estimators, rely heavily on the global geometric model between
the image pair I I( , )R T . These methods may be effective for satellite
images, whose elevation ranges are very small compared with the flight
altitudes of the sensors. Thus, a global affine or homography transfor-
mation can well model the geometric relationship. However, with the
development of sensors, many other kinds of images have become in-
creasingly popular, such as unmanned aerial vehicle (UAV) images,
panorama images, and oblique images. The viewpoint changes and
scene elevation ranges of UAV images and oblique images are usually

very large; panorama images usually contain serious geometric distor-
tions. The geometric relationships between these types of images are
more complex, which generally undergo nonrigid transformations and
cannot be well modeled by global transformations. In these cases, tra-
ditional methods may get low Precision or Recall accuracies.
Fortunately, the local structures inside an image are still preserved after
non-rigid transformations. Namely, the relationship between small
local regions inside the image pair I I( , )R T can still be well modeled by
an affine or homography transformation. In the above, we have shown
that the LBC is invariant to local affine transformations. In other words,
the LBC is preserved under both rigid transformations and nonrigid
transformations. Thus, the robust feature matching problem can be
formulated as,

= = +x xI C I M N Karg min ( ; , ) arg min[ ( )]
I I i I

i
lbc

i
lbc*

2
2

(17)

where C I M( ; , ) is a cost function; x x( , )i
lbc

i
lbc is the LBC of x x,( )i i ; ||·||2 is

the l2-norm operator; is a balance parameter; K stands for the number
of inliers in I ; and I * is the optimal solution of I . In this cost function
C I M( ; , ), x xi I i

nbc
i
nbc

2
2 is a data term (called the LBC distance),

which penalizes any point correspondences with large LBC distances;
the term N K( ) minimizes the number of outliers; and parameter
balances these two terms. If the correspondences in I can be perfectly
matched, the optimal solution will obtain zero data cost, namely, the
data term will be zero.

In the above cost function, we only consider the inlier set I . To
extend to the total initial correspondence set M , we introduce an N × 1
binary vector =b b{ }i N

1 to assign a flag for each correspondence in M ,
where b {0, 1}i . Specifically, if a correspondence x x,( )i i is an inlier, its
flag =b 1i ; otherwise, =b 0i . Hence, the feature matching problem is
finally converted to,

=

= +

= +

=

= =

=

=

b b

x x

x x

x x

C M

b N b

b N

b

arg min ( ; , )

arg min[ ( ) ( )]

arg min[ ( ) ]

arg min ( )

b

b

b

b

i
N

i i
lbc

i
lbc

i
N

i

i
N

i i
lbc

i
lbc

i
N

i i
lbc

i
lbc

1 2
2

1

1 2
2

1 2
2

(18)

Our goal is to find the optimal flag vector b . In this cost function,
x xi

lbc
i
lbc

2
2 is the LBC distance of the i-th correspondence x x,( )i i .

Specifically, if x x,( )i i is an inlier, the data term will be zero or a very
small value; otherwise, the outlier will lead to a large cost.

As mentioned earlier, initial feature correspondences are given in
advance by descriptor-based methods, which means that the neigh-
borhood relationship of each point is fixed. Thus, for each correspon-
dence x x,( )i i , we search its three neighboring correspondences and
compute the LBC of x x,( )i i . Then, the LBC distance of each correspon-
dence can be calculated. That is, in Eq. (18), the correspondence
number N , the balance parameter , and the LBC distance x xi

lbc
i
lbc

2
2

are known values. The only unknown variable is =b b{ }i N
1 . Clearly,

correspondences with LBC distances less than lead to negative costs,
which decrease the total energy function; in contrast, correspondences
whose LBC distances are larger than will increase the total energy.
Thus, the optimal solution b can be simply obtained by,

=
>

=
x x
x x

b i N
1
0 ,

1, 2, ...,i
i
lbc

i
lbc

i
lbc

i
lbc

2
2

2
2 (19)

Once the binary vector b is determined, the optimal inlier set I * is
obtained simultaneously,

= = =I i b i N{ | 1, 1, 2, ..., }i
* (20)

The LBC-based feature matching method is summarized in
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Algorithm 1.

Algorithm 1: Feature matching based on the LBC

Input: Initial correspondences =M x ,x{( )}N
i i 1 and parameter

Output: Optimal inlier set I *

1 Search 3 neighborhoods for each correspondence x ,x( ) Mi i ;
2 Convert Cartesian coordinates x ,x{( )}i i 1

N to LBCs x ,x{( )}i
lbc

i
lbc

1
N;

3 Calculate bi based on Eq. (19);
4 Determine the inlier set I * via Eq. (20).

Generally, Algorithm 1 can achieve sufficiently good results. However,
the algorithm still suffers two drawbacks: First, some inliers may be
treated as outliers, which will decrease the number of inliers and the
Recall performance. In our method, the neighborhood relationship of
each point is fixed. If the neighborhoods of an inlier contain outliers,
the calculated LBC will be not affine-invariant and will lead to a very
large LBC distance. The large LBC distance, then, will classify the inlier
as an outlier according to Eq. (19). Second, the obtained inliers are not
quantitatively evaluated; therefore, it may be difficult to distinguish
ground truth inliers from noises with relatively low position accuracy.
The proposed method performs feature matching in the LBC system
instead of the traditional Cartesian coordinate system. In the Cartesian
coordinate system, the residual of a correspondence usually means its
reprojection error, which measures how accurate the correspondence is.
Specifically, correspondences with smaller residuals are closer to the
ground truth. In contrast, correspondences with larger residuals deviate
from their ground truth. However, the residual in the LBC system
x xi

lbc
i
lbc

2 loses its physical meaning. Reprojection error metric is
more straightforward to measure the matching position accuracy of a
correspondence.

Fortunately, we have proposed the concept of MCM, which is sui-
table for dealing with such problems. Specifically, we first treat the
matches I * obtained by Algorithm 1 as an inlier set and build a k-d tree
(Indyk and Motwani, 1998) for efficient searching. Then, for each
feature match x x M I( , ) ( ),i i that is not extracted by Algorithm 1,
we search its k nearest neighbors in the k-d tree and construct local
MCMs Mx and My. They are not full-rank matrices, and they approxi-
mately satisfy Theorem 2. Next, we can obtain the predicted correct
matches xi of xi according to Eqs. (15) and (16). Finally, we calculate
the residuals between xi and xi . Matches whose residuals are smaller
than a predefined threshold are regarded as inliers. We add these
reidentified inliers into I * and obtain the final inlier set If . The pro-
posed MCM-based correct match identification method is summarized
in Algorithm 2. However, if the outlier rate of initial matches is ex-
tremely high (more than 80%), the performance of Algorithm 1 and
Algorithm 2 may largely decrease. Fortunately, we can easily address
this problem via a correspondence sampling strategy with matching
scores (Li et al., 2016) or a guided strategy with smaller NNDR.

Algorithm 2: Match identification based on MCMs

Input: Optimal inlier set I * and M I
Output: Final inlier set I f

1 Build a k-d tree for I *;
2 For each match x x M I,( ) ( )i i , search its k neighbors;
3 Construct the local MCMs based on these neighbors;
4 Predict the correct match xi of xi according to Eqs. (15) and (16);
5 Calculate the residuals between xi and xi , and identify the inlier.
6 Add inliers into I * to get the final inlier set I f .

3.4. Computational complexity

The proposed method consists of two main stages, which are sum-
marized in Algorithm 1 and Algorithm 2. In both algorithms, we use a

k-d tree for efficient neighbor searching. Generally, the time complexity
of the k-d tree search is linearithmic. In Algorithm 1, the time com-
plexity of searching 3 neighbors is close to +O((3 N)log N). Lines 2 and
3 have linear time complexity, which are close to O(N). The final line
only involves a comparison operation, whose complexity is O(1). The
time complexity of Algorithm 1 is approximately

+ + +O((3 N)log N N 1). In Algorithm 2, lines 1 and 2 search the k
nearest neighbors and cost +O((k (N |I |))log(N |I |))* * complexity,
where I| |* represents the number of matches in the inlier set I *. Lines 3,
4, and 5 only involve some simple operations, such as addition, sub-
traction and multiplication. Their time cost is only O(N). The com-
plexity of line 6 is O(1). The time complexity of Algorithm 2 is ap-
proximately + + +O((k (N |I |))log(N |I |) N 1)* * . Thus, the total
time complexity of the proposed method can be simplified as
O(N log N). Both stages cost linear space complexity. In Algorithm 1,
the storage of neighborhoods is O(3N); the storage of b is O(N); and the
storage of I * is O(|I |)* . In Algorithm 2, the storage of neighborhoods is
O(k(N |I |))* ; the storage of If is O(|I |)f . The total space complexity of
LAM can be simplified as O(N). Hence, the proposed LAM algorithm has
linear space and linearithmic time complexities, which are very suitable
for real-time and large-scale applications compared with traditional
methods.

4. Experiments and evaluations

In this section, we comprehensively study the performance of the
proposed LAM algorithm on image datasets with both rigid and non-
rigid transformations. We compare our LAM algorithm with eight other
state-of-the-art approaches, i.e., RANSAC (Fischler and Bolles, 1981),
MLESAC (Torr and Zisserman, 2000), LORANSAC (Chum et al., 2003),
FastVFC (Ma et al., 2013), LLT (Ma et al., 2015), LPM (Ma et al., 2017),
GMS (GMS + R&S represents the GMS that considers rotation and
scaling, which increases the robustness to rotation changes while also
largely increasing the computational complexity) (Bian et al., 2017),
and IBCO (Cai et al., 2018). MLESAC uses an affine model while
RANSAC, LORANSAC, and IBCO use a homography model. To make fair
comparisons, we use the implementations of these algorithms from
open source websites. There are three main parameters in the proposed
LAM method: the LBC distance threshold , the number of nearest
neighbors k, and the inlier threshold . We set = 0.05, =k 6, and

= 3. All the parameters are fixed throughout the following experi-
ments. We use five metrics for quantitative evaluation, i.e., Precision,
Recall, Fscore, mean absolute error (MAE), and root-mean-square error
(RMSE). Precision reflects the proportion of inliers in the whole detected
matches. Recall is the ratio of the detected inlier number and the ground
truth inlier number. Fscore describes the overall accuracy that combines
the metrics of Precision and Recall. The Fscore is computed as follows,

=
+

Fscore
Precision Recall
2Precision·Recall

(21)

The formulas of MAE and RMSE are,

=

=

=

=
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1

1
1

2
(22)

where vi is the residual error of the i-th correspondence. The experiment
settings, including parameters, datasets, initial feature matcher,
methods for comparison, and evaluation metrics, are briefly summar-
ized in Table 1. All the reported running time is calculated on a laptop
with an Intel Core i7-8550U @ 1.8 GHz CPU, 8 GB of RAM.

4.1. Rigid feature matching

We use the Oxford dataset (Mikolajczyk and Schmid, 2005) and a
satellite image dataset (shorted by satellite dataset) for this experiment.
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4.1.1. Comparisons on the Oxford dataset
The Oxford dataset contains eight categories, including Bikes, Trees,

Leuven, UBC, Bark, Boat, Graf, and Wall (as shown in Fig. 2). Bikes and
Trees suffer from blur changes; Leuven contains illumination variations;

UBC suffers from JPEG compression artifacts; Bark and Boat contain
zoom and rotation variations; Graf and Wall suffer from viewpoint
changes. Each category consists of six images with increasing varia-
tions. The first image can form five image pairs with other images.
Therefore, the Oxford dataset consists of a total of 40 image pairs. The
ground truth homography transformations of these image pairs are also
provided. We use the SIFT algorithm implemented by the VLFeat
(Vedaldi and Fulkerson, 2010) toolbox to generate initial feature mat-
ches, where the nearest-neighbor distanceratio (NNDR) is set to 0.83.
SIFT algorithm is sensitive to large viewpoint variations. It may fail to
extract any correct correspondences on some image pairs, such as the
fifth image pair of Graf. In these cases, we use the affine-SIFT (ASIFT)
(Morel and Yu, 2009) algorithm to generate putative correspondences.
For each image pair, we regard matches whose reprojection errors are
smaller than = 3 pixels under the ground truth transformation as in-
liers.

Figs. 3-5 plot the Precision, Recall, and Fscore results on the Oxford
dataset, respectively. From Fig. 3, we can see that: MLESAC, LORAN-
SAC, and IBCO achieve the best Precision performance. Our LAM is
comparable with them on the most of image pairs. The Precision of LAM
is much higher than the other five methods. In the cases with large
viewpoint changes (such as Graf and Wall categories), LAM is worse
than MLESAC, LORANSAC, and IBCO. This indicates that the proposed
LAM may be slightly sensitive to large viewpoint variations, because
large viewpoint changes lead to serious projective distortions rather
than affine distortions. Fortunately, the proposed LAM still achieves
sufficiently good results in such cases. RANSAC, FastVFC, LLT, and
GMS + R&S get less satisfactory Precision results than LAM. Their per-
formance generally lies in the middle level among the nine compared
methods. FastVFC and LLT are very sensitive to large projective dis-
tortions. For example, they obtain the lowest Precision accuracy on the
Graf category. LPM performs the worst on the first four categories. GMS
gets the lowest Precisions on the Bark category. According to the Recall
comparison (Fig. 4), LLT is the best, with results close to 100%. FastVFC
and LPM perform similarly to LLT. The proposed LAM ranks next. The
worst result from LAM among these 40 pairs is still close to 90%.
MLESAC is very sensitive to large viewpoint changes since it uses a
global affine transformation model. Its Recall accuracy is only 20% on
the Wall category. Compared with RANSAC, we find that affine trans-
formations are more sensitive to complex geometric distortions than
homography transformations. GMS is very sensitive to rotation and
zoom changes. Its Recall accuracy is the lowest on the Bark and Boat
categories. Fig. 5 gives the overall performance of each method. As can
be seen, IBCO ranks best in terms of Fscore. Only several results do not
attain the highest Fscore. The proposed LAM is comparable with IBCO.
RANSAC, LORANSAC, FastVFC, and LLT achieve similar results, whose
performances rank in the second group. MLESAC is comparable to the
proposed LAM in most cases. However, MLESAC performs too poorly on
the last two categories. Similar to the Precision performance compar-
ison, the LPM and GMS perform the worst in all categories except for
the Graf and Wall categories.

Table 2 reports the average Precision, Recall, Fscore, MAE, RMSE,
and running time results. The Precision of the proposed LAM ranks
second among all nine compared methods. The Recall of our method is
higher than 95%, which is sufficient for photogrammetric applications.
The average Fscore accuracies of RANSAC, MLESAC, LORANSAC,
FastVFC, LLT, LPM, GMS, GMS + R&S, IBCO, and LAM are 90.63%,
81.15%, 93.09%, 91.97%, 91.48%, 87.49%, 69.52%, 76.30%, 94.25%
and 93.75%, respectively. Our method ranks second, which achieves an
0.66% growth rate compared with LORANSAC which ranks third.
MLESAC achieves comparable performance with the proposed method
in most cases. However, the Recall of MLESAC is very sensitive to large
viewpoint changes, which significantly decreases its overall perfor-
mance. LORANSAC has the best MAE and RMSE. The proposed method
is slightly worse than LORANSAC, which is much better than RANSAC,
FastVFC, and GMS. Both the MAE and RMSE of LPM are the worst. LPM

Table 1
The details of experimental settings.

Settings Information

Parameters (LAM) LBC distance threshold: = 0.05;
Number of neighbors: =k 6;
Inlier threshold: = 3.

Datasets Rigid:
(1) Oxford dataset, 40 image pairs;

url: http://www.robots.ox.ac.uk/~vgg/research/
affine/

(2) Satellite dataset, 10 image pairs;
url: http://www.escience.cn/people/lijiayuan

Nonrigid
Nonrigid dataset, 10 image pairs.
url: http://www.escience.cn/people/lijiayuan

Initial matcher SIFT, Code:
http://www.vlfeat.org/
ASIFT, Code:
http://www.cmap.polytechnique.fr/~yu/research/ASIFT/

Methods RANSAC, MATLAB:
https://www.peterkovesi.com/matlabfns/index.html#
robust
MLESAC, MATLAB:
http://www.math.unipa.it/fbellavia/htm/research.html
LORANSAC, MATLAB:
https://zhipengcai.github.io/
FastVFC, MATLAB:
http://www.escience.cn/people/jiayima/index.html
LLT, MATLAB:
http://www.escience.cn/people/jiayima/index.html
LPM, MATLAB&C++:
http://www.escience.cn/people/jiayima/index.html
GMS, C++: (without GPU setting)
https://github.com/JiawangBian/GMS-Feature-Matcher
IBCO, MATLAB:
https://zhipengcai.github.io/
LAM, MATLAB:
http://www.escience.cn/people/lijiayuan

Evaluation metrics Precision; Recall; Fscore; MAE; RMSE.

(a) Bikes (b) Trees

(c) Leuven                     (d) UBC

(e) Bark (f) Boat

(g) Graf (h) Wall

Fig. 2. Example images of Oxford dataset. Bikes and Trees, blur; Graf and Wall,
viewpoint change; Bark and Boat, zoom and rotation; Leuven, illumination
change; UBC, JPEG compression.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Comparison of Precision on the Oxford dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Comparison of Recall on the Oxford dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Comparison of Fscore on the Oxford dataset.
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is only based on the observation that the spatial distribution of the
neighborhoods of a correct correspondence should be preserved. This
property is a local topological constraint that may be sensitive to noisy
matches. For instance, matches with residuals larger than 3 pixels while
smaller than 10 pixels may also obey the local topological constraint.
These matches will be accepted as inliers by LPM. The basic idea of LPM
is the closest to that of our LAM among the compared methods. How-
ever, our method performs much better than LPM. The reason may be
that the proposed LBC is a more exact local geometric constraint
compared with the spatial distribution of the neighborhoods. In terms
of Time, GMS is the fastest in the table. However, its performance is the
worst since it does not address rotation and scaling changes. GMS + R&
S is much slower than GMS because GMS + R&S performs the standard
GMS in 9 directions and 5 scales. As a result, the computational com-
plexity of GMS + R&S is almost 45 times that of GMS. LPM ranks
second. It is almost 10+ times faster than GMS + R&S, 30+ times
faster than RANSAC and MLESAC, 100+ times faster than LLT, 1000+
times faster than FastVFC and LORANSAC, and 5000+ times faster
than IBCO. First, the core algorithm of LPM is implemented by C++,
while other methods (except for GMS and GMS + R&S) are all im-
plemented by MATLAB. Second, the time complexity of LPM is linear-
ithmic. In fact, the proposed LAM has the same time complexity as LPM.
Both of them have O(N log N) complexity, which means that LAM will
be as fast as LPM if we rewrite LAM by C++. Thus, our method is very
suitable for real-time and large scale feature matching problems. The
time complexity of FastVFC is O(N )3 . The time complexity of IBCO is
polynomial to the size of initial matches. It is very time-consuming on
the Graf and Wall categories, since the numbers of ASIFT initial mat-
ches are generally larger than 10000. The inlier rates of this dataset are
very high (generally higher than 50%). Thus, RANSAC and MLESAC are
not very time-consuming on this dataset. Even so, the proposed LAM is
still two times faster than them. Although RANSAC-type methods and
deterministic methods are slow in our comparison, they will regain a
part of their investment later. They establish reliable correspondences
and fit geometric models simultaneously, which can provide accurate
initial values and let costly global bundle adjustment converge faster.

4.1.2. Comparisons on the Satellite dataset
The Satellite dataset contains 15 remote sensing image pairs, which

are formed by multi-sensor, multi-temporal, or multi-spectral satellite/
aerial images. The image pairs 8–15 are selected from the Erdas sample
data1. Their image sizes are normalized to 1450 × 1380 pixels. The
spectral mode, image size, ground sample distance (GSD), acquisition
date, location, and description information of each image pair in this
dataset are summarized in Table 3. As shown, the GSD of this dataset

ranges from 0.5 m to 30 m, namely, the dataset contains both low- and
high- resolution remote sensing images. Matching on the Satellite da-
taset is very challenging due to serious geometric and radiation dis-
tortions. For instance, multi-sensor and multi-spectral images suffer
from significant radiation differences; the geometric distortions may be
large in multi-temporal image pairs; and the overlapping regions of
image pairs 8–15 are extremely small (smaller than 5% of the image
width). For each image pair, an approximate ground-truth affine
transformation is established. Specifically, we manually select six
evenly distributed image matches with a location accuracy of 0.2 pixels;
then, we treat these matches as control points and estimate an accurate
affine transformation by least squares. The estimated transformation is
accepted as the approximate ground-truth transformation. Again, we
use SIFT to extract initial correspondences, and correspondences with
residual errors smaller than 3 pixels are accepted as ground truth in-
liers.

First, the proposed LAM algorithm is qualitatively evaluated on
three image pairs 1, 9, and 14, where image pair 1 has a large land-use
difference, such as buildings; image pair 9 and image pair 14 suffer
from extremely small overlapping regions along the horizontal and
vertical directions, respectively. The outlier rates of the initial matches
extracted from these three image pairs are 81.15%, 92.37%, and
94.42%, respectively. Due to such high outlier rates, matching these
image pairs is very challenging. The results are given in Figs. 6–8.

From the results, we know that RANSAC achieves sufficient good
performance on these images. However, it still preserves some noisy
matches with low location precisions since it only uses a minimal subset
instead of the whole matching set to estimate the geometric transfor-
mation. Its Recall is also not very high. For example, its Recall on image
pair 9 is lower than 85%. MLESAC, GMS, and GMS + R&S achieve very
good results on the Precision metric. Their Precision accuracies are even
better than the proposed LAM on image pair 9. However, their Recall
accuracies are very poor. For instance, the Recall accuracies of MLESAC,
GMS, and GMS + R&S on image pair 14 are only approximately 18%,
22% and 24%, respectively. FastVFC obtains good results on image pair
1. However, it does not detect any matches on image pair 9, which
means that the method is completely ineffective. The results of FastVFC
may still preserve many false matches with very large projection re-
siduals, such as the result in Fig. 8. LLT performs similarly to FastVFC. It
fails to detect any correspondences in the Fig. 8. LLT uses a closed-form
solution to solve the affine transformation. Thus, it is also sensitive to
noise, which can be clearly seen in Fig. 6 and Fig. 7. LORANSAC and
IBCO achieve similar results. Both methods yield poor results on image
pair 14. The reason is that IBCO takes the output of LORANSAC as
input. Thus, IBCO relies heavily on the initial solution provided by
LORANSAC and is sensitive to very high outlier rates. LPM has the
worst Precision among all compared methods. It is not suitable for cases
with high outlier rates, especially those higher than 80%. In contrast,

Table 2
Performance comparison on the Oxford dataset.

Numbers in red and blue represent the best and the second. We run the complete test 40 times, and each cell contains an empirical mean
and a standard deviation of the results.

1 http://download.intergraph.com/downloads/erdas-imagine-2013-2014-
example-data.
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the proposed LAM algorithm achieves the best results. Both the Preci-
sion and Recall are very high, i.e., close to 100%. Only several matches
with residuals slightly higher than 3 pixels are preserved.

Then, we quantitatively evaluate our method on the whole Satellite
dataset. Fig. 9 plots the Fscore results. Table 4 summarizes the average
Precision, Recall, Fscore, MAE, RMSE, and running time results. From
Fig. 9, we can draw similar conclusions with the qualitative evaluation.
RANSAC obtains acceptable results on all the image pairs. The perfor-
mance is neither too good nor bad. MLESAC obtains comparable Pre-
cision accuracy with the proposed LAM. However, MLESAC gets very
low Recall on some image pairs, which significantly decreases its total
performance Fscore. FastVFC and LLT achieve similar results. Both of
them may fail in some cases. Thus, they get zero Fscores on several
image pairs. LORANSAC and IBCO are worse than FastVFC and LLT.
LPM, GMS, and GMS + R&S obtain the lowest Fscores on most of the

image pairs. The Precision performance of LPM is very poor. Its results
are just better than the initial matches. In contrast, the proposed LAM
method achieves the best overall accuracy.

As reported in Table 4, the proposed LAM achieves the best average
performance in terms of Precision, Fscore, MAE, and RMSE and achieves
the second best in terms of Recall. The average Fscore accuracies of
RANSAC, MLESAC, LORANSAC, FastVFC, LLT, LPM, GMS, GMS + R&S,
IBCO, and LAM are 87.34%, 89.01%, 75.22%, 73.14%, 74.41%,
60.45%, 45.95%, 52.47%, 73.45%, and 98.59%, respectively. Our
method achieves an 9.58% growth rate compared with MLESAC, which
ranks second. Since our method achieves the best Precision accuracy
(close to 100%), the MAE and RMSE of our LAM are much smaller than
those of other compared methods. Our average MAE and RMSE are 1.12
pixels and 1.34 pixels, which means that there are no outliers with large
projection residuals in our results. The MAE and RMSE of the second-

Table 3
The information about the Satellite dataset.

No. Image pair Spectral mode Image size GSD(m) Acquisition date Location Description

1 World View 2 Pan 405 × 350 0.5 2011 USA- Multi-temporal
World View 2 Pan 405 × 350 0.5 2014 California

2 TM Band 5 512 × 512 30 1992 Brazil- Multi-temporal
TM Band 5 512 × 512 30 1994 Amazon

3 JERS-1 Radar 256 × 256 18 1995 Brazil- Multi-temporal
JERS-1 Radar 256 × 256 18 1996 Amazon

4 TM Band 5 512 × 512 30 1990 USA- Multi-temporal
TM Band 5 512 × 512 30 1994 Iowa

5 SPOT 5 True color 800 × 800 2.5 2002 China- Multi-temporal
SPOT 6 True color 800 × 800 1.5 2012 Beijing Multi-sensors

6 TM Band 1 1450 × 1480 30 2000 Unknown Multi-
TM Band 4 1450 × 1480 30 bands

7 Radarsat-2 Radar 800 × 800 3 2013 China- Multi-sensors
Airborne SAR Radar 800 × 800 3 Jiangsu

8–15 Aerial Color-infrared 1450 × 1380 0.2 2011 USA- Small overlaps
Aerial Color-infrared 1450 × 1380 0.2 Illinois

(a)RANSAC. P=89.13%, R=89.13% (b)MLESAC. P=95.56%, R=93.48% (c)LORANSAC. P=95.74%, R=97.83% (d)FastVFC. P=83.64%, R=100% (e)LLT. P=83.64%, R=100% 

(f)LPM. P=35.94%, R=100%         (g)GMS. P=100%, R=13.04%  (h)GMS+R&S. P=100%, R=13.04%      (i)IBCO. P=93.88%, R=100% (j)Our LAM. P=100%, R=100%

Fig. 6. Results on image pair 1 of the Satellite dataset. Green dots are keypoints, yellow lines are false correspondences, and blue lines are inliers. No more than 100
correspondences are displayed for good visualization. (P and R stand for Precision and Recall, respectively). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(a)RANSAC. P=96.19%, R=82.11% (b)MLESAC. P=100%, R=71.54% (c)LORANSAC. P=100%, R=91.87% (d)FastVFC. P=0, R=0          (e)LLT. P=89.21%, R=98.68% 

(f)LPM. P=37.27%, R=100%   (g)GMS. P=100%, R=56.1%     (h)GMS+R&S. P=100%, R=56.1% (i)IBCO. P=100%, R=89.43%  (j)Our LAM. P=98.4%, R=100% 

Fig. 7. Results on image pair 9 of the Satellite dataset. Green dots are keypoints, yellow lines are false correspondences, and blue lines are inliers. No more than 100
correspondences are displayed for good visualization. (P and R stand for Precision and Recall, respectively). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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best method are only 1.56 pixels and 2.27 pixels. In terms of Time, GMS
only takes 0.001 s, which is much faster than other methods. RANSAC,
MLESAC, and LORANSAC are time consuming due to the high outlier
rates. They require a large number of sampling trials to obtain accep-
table results. As mentioned earlier, the running time of FastVFC is re-
lated to the size of the data. In this dataset, the numbers of initial

matches are relatively small (the maximum number is 1600). Thus, the
running time of FastVFC is much shorter than that on the Oxford da-
taset. Our LAM is almost 10 times faster than FastVFC and LLT, 50+
times faster than MLESAC, 300+ times faster than RANSAC, and 900+
times faster than IBCO.

(a)RANSAC. P=93.33%, R=71.79% (b)MLESAC. P=91.33%, R=17.94% (c)LORANSAC. P=77.78%, R=8.97% (d)FastVFC. P=78.79%, R=100%        (e)LLT. P=0, R=0

(f)LPM. P=21.58%, R=100%        (g)GMS. P=100%, R=21.79%    (h)GMS+R&S. P=90.48%, R=24.36%  (i)IBCO. P=75%, R=11.38%       (j)Our LAM. P=92.86%, R=100% 

Fig. 8. Results on image pair 14 of the Satellite dataset. Green dots are keypoints, yellow lines are false correspondences, and blue lines are inliers. No more than 100
correspondences are displayed for good visualization. (P and R stand for Precision and Recall, respectively). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Comparison of Fscore on the Satellite dataset.

Table 4
Performance comparison on the Satellite dataset.

Note that if the MAE or RMSE of a method on an image pair is higher than 20 pixels, we regard it as 20 pixels. Namely, the maximum of
MAE or RMSE is 20 pixels. Numbers in red and blue represent the best and the second. We run the complete test 40 times, and each cell
contains an empirical mean and a standard deviation of the results.
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4.2. Nonrigid feature matching

As mentioned above, the proposed LAM is also suitable for nonrigid
feature matching problems. We collect 10 image pairs with nonrigid
transformations for evaluation, as shown in Fig. 10. The image pairs do
not contain ground truth transformations. We also use the SIFT algo-
rithm to provide initial matches. We set the NNDR to 0.67 because
smaller values of NNDR generate initial matches with higher inlier
rates. Hence, the power of LPM and GMS (GMS + R&S) can be de-
monstrated. To establish the ground truth inlier correspondences, we
first use the 4FP-Structure method (Li et al., 2017a) (without match
expansion stage) to extract a reliable match set. Then, we artificially
confirm the correctness of each match in the reliable set and check the
matches in the remaining set. Calculating MAE and RMSE on image
pairs with complex nonrigid transformations is difficult. Therefore, we
only use Precision, Recall, and Fscore metrics for quantitative evalua-
tions.

Figs. 11–13 give the qualitative comparisons on the image pairs 1, 7,
and 8 of the Nonrigid dataset, respectively. There are three rigid geo-
metric models in image pair 1. Thus, the matches should be three
groups. Image pair 2 suffers from serious “slow and smooth” geometric
distortions and a large rotation (large than 45°). Image pair 14 also
suffers from large distortions and a 180° rotation. Unfortunately, the
distortions are not “slow and smooth”. As shown, if an image pair
contains multiple rigid geometric models such as image pair 1,
RANSAC, MLESAC, LORANSAC, LLT and IBCO are only able to estimate

one of them. Thus, their results only contain one group of matches,
which is why they have very attractive Precision results while very poor
Recall performances. FastVFC performs better than these methods. It
can extract two groups of matches. However, there is a group of correct
matches that is discarded by FastVFC. Only LPM, GMS, GMS + R&S,
and the proposed LAM are able to extract all the three groups of correct
matches. For image pair 7, RANSAC, MLESAC, LORANSAC, and IBCO
only preserve the matches that obey the rigid geometric transformation.
Thus, correct matches with large local geometric distortions are clas-
sified as outliers. GMS failed completely. The reason may be that GMS
are sensitive to large rotations. FastVFC obtains a comparable result
with our LAM. FastVFC assumes that the vector field is “continuous and
smooth”. Thus, it is very suitable for “slow and smooth” distortions.
From Fig. 13, both FastVFC and LLT are completely failed. The reasons
are two-fold: First, the distortions in this image pair conflict with the
principle of “continuous and smooth”. Second, the image pair suffers
from an extremely large rotation. Again, the Recall accuracies of
MLESAC, LORANSAC and IBCO are very low. Only RANSAC, GMS + R
&S, and the proposed LAM achieve good results. Comparing MLESAC
and RANSAC, we can see that homography model is more robust than
the affine model under complex geometric distortions. Although LOR-
ANSAC and IBCO also use a homography model, they generate a qua-
siconvex matrix to compute residuals. This process is sensitive to large
geometric distortions and is time consuming. Although LPM obtains
acceptable results on all three image pairs, LPM still preserves many
false matches, which largely decreases its Precision performance. In
contrast, the Precision performance of our LAM is much higher than that
of LPM.Fig. 12.

Fig. 14 gives the quantitative comparisons. LORANSAC and IBCO
achieve the best Precision accuracies. However, their Recall accuracies
are low, which result in poor overall accuracy, i.e., Fscore. MLESAC gets
comparable results with RANSAC except for image pair 4. FastVFC
achieves attractive results on most of the image pairs. However, it failed
on image pair 8. LLT performs the worst. It failed on half of the image
pairs. LPM achieves the best Recall accuracy, and its Precision fluctuates
by approximately 80%. In contrast, the Precision results of our LAM are
higher than 95% on most of the image pairs. The average Precision,
Recall, and Fscore results on the Nonrigid dataset are reported in
Table 5. As shown, the proposed LAM achieves the best average Fscore
performance and gets the second best in terms of Recall. Our Precision is
slightly lower than LORANSAC and IBCO. The average Fscore ac-
curacies of RANSAC, MLESAC, LORANSAC, FastVFC, LLT, LPM, GMS,
GMS + R&S, IBCO, and LAM are 60.97%, 38.53%, 47.45%, 77.95%,
39.26%, 88.19%, 51.01%, 78.96%, 47.93%, and 96.33%, respectively.
Our method achieves an 8.14% growth rate compared with LPM which
ranks second.

5. Conclusions

This paper proposes a new robust feature matching algorithm called
LAM. In contrast to RANSAC-type methods, LAM is suitable for both

Fig. 10. Nonrigid dataset.

(a) RANSAC (b) MLESAC (c) LORANSAC  (d) FastVFC           (e) LLT             (f) LPM        (g) GMS (h) GMS+R&S (i) IBCO (j) Our LAM
P=92.75%        P=100%      P=100% P=92.91%    P=93.06%          P=75.20% P=95.8% P=95.24% P=98.46% P=95.19% 

R=34.41%          R=30.11%       R=33.87% R=70.43%         R=36.02%          R=99.54%        R=73.66% R=86.02% R=34.41% R=95.7% 

Fig. 11. Results on image pair 1 of the Nonrigid dataset. Green dots are keypoints, yellow lines are false correspondences, and blue lines are inliers. No more than 100
correspondences are displayed for good visualization. (P and R stand for Precision and Recall, respectively). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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rigid and nonrigid image matching problems. In addition, LAM is very
efficient since it only has linear space complexity and linearithmic time
complexity.

We define a new concept called MCM and present a new LBC system
in the proposed LAM. The LBC is invariant to local affine transforma-
tions. This property is still preserved under complex non-rigid trans-
formations, which makes the LBC more suitable for feature matching
tasks than Cartesian coordinates. Thus, we adapt the LBC into a
mathematical model to extract potential reliable matches that preserve
local geometric constraints. To find other correct matches with false
neighborhood correspondences, LAM constructs local MCMs to identify
the correctness for the remaining matches by minimizing the rank of
MCMs. These two stages not only guarantee the Precision accuracy but
also the Recall performance of the proposed LAM. Extensive experi-
ments on both rigid and nonrigid datasets demonstrate the power of the
proposed LAM method. The limitation of LAM is that it only considers
geometric constraints. Thus, false matches that satisfy the local affine
constraints will be accepted as inliers by our LAM. In addition,
RANSAC-type methods and deterministic methods are robust estima-
tion techniques, which are more generic and applicable to any model
fitting problem of not too high dimension, whereas the proposed
method is tailored specifically to matching problem but not straight-
forward to adapt to other tasks.

(a) RANSAC      (b) MLESAC    (c) LORANSAC    (d) FastVFC            (e) LLT               (f) LPM               (g) GMS   (h) GMS+R&S (h) IBCO       (j) Our LAM
P=98.08%       P=100%             P=100% P=92.5%  P=100% P=72.82%   P=0                P=95.12% P=100%  P=97.37% 

R=68%        R=22.67%      R=42.67% R=98.67%         R=8% R=100%         R=0 R=52% R=48% R=98.67% 

Fig. 12. Results on image pair 7 of the Nonrigid dataset. Green dots are keypoints, yellow lines are false correspondences, and blue lines are inliers. No more than 100
correspondences are displayed for good visualization. (P and R stand for Precision and Recall, respectively). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(a) RANSAC      (b) MLESAC    (c) LORANSAC    (d) FastVFC            (e) LLT               (f) LPM               (g) GMS     (h) GMS+R&S         (h) IBCO         (j) Our LAM

P=100%           P=100%           P=100% P=0 P=0 P=66.39% P=100%  P=98.44% P=100% P=97.59% 

R=78.57%         R=36.9%        R=43.05% R=0 R=0 R=96.71% R=13.1%  R=75% R=44.08% R=96.43% 

Fig. 13. Results on image pair 8 of the Nonrigid dataset. Green dots are keypoints, yellow lines are false correspondences, and blue lines are inliers. No more than 100
correspondences are displayed for good visualization. (P and R stand for Precision and Recall, respectively). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(a) Precision (b) Recall (c) Fscore

Fig. 14. Quantitative comparisons on the Nonrigid dataset.

Table 5
Performance comparison on the Non-rigid dataset.

The numbers in red and blue represent the best and the second best. We run the
complete test 40 times, and each cell contains an empirical mean and a standard
deviation of the results.
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