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ABSTRACT
Automatic road extraction from remotely sensed images is an
important and challenging task. This article proposes an unsuper-
vised road detection method based on a Gaussian mixture model
and object-based features. Our approach has five major stages, i.e.
superpixel segmentation, feature description, homogeneous
region merging, clustering via the Gaussian mixture model, and
outlier filtering. In the third step, we present a graph-based region
merging algorithm, in which the nodes of the graph are super-
pixels and edges are the similarities of intensity, colour, and
texture. We also define two shape features, called deviation of
parallelism (DoP) and narrow rate (NR), to automatically recognize
road layer and filter outliers in the last step. We evaluated the
proposed method on a variety of datasets, in which the Vaihingen
dataset from the International Society for Photogrammetry and
Remote Sensing Test Project is also included. Results demonstrate
the power of our approach compared with some state-of-the-art
methods.
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1. Introduction

Road extraction is a key technique for many remote-sensing applications, such as
geographic information system (GIS) construction, navigation, and emergency planning
systems. It can significantly reduce time and labour compared with traditional manual
methods. Over the past decades, various methods on road detection have been pre-
sented. Systematic review of the past works may be found in the literature
(Quackenbush 2004; Mena 2003). In this article, we roughly categorize road extraction
algorithms into semi-automatic and automatic methods, which is dependent on
whether user interactions are required.

To sidestep the challenge of automatic road networks extraction, an effective way is
to reduce the complexity of the problem with the aid of user-supplied information. A
number of well-performing semi-automatic algorithms use seeds with directions to track
the road. Gruen and Li (1997) proposed a three-dimensional road detection method,
called Least-Squares B-spline Snakes (LSB-Snakes), by fusion of snakes model and least-
squares framework with constraints of seeds. Hu, Zhang, and Tao (2004) semi-
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automatically detected road networks based on a piecewise parabola model and solved
the parameters of the parabola by employing a least square template matching techni-
que. In the works of Movaghati, Moghaddamjoo, and Tavakoli (2010), the geometric and
radiometric properties of a road around the seed were modelled, and they tracked the
road while updating the observation model via an extended Kalman filter (EKF) and a
particle filter (PF). Unsalan and Sirmacek (2012) developed a road system which consists
of three major stages: road centre extraction, road shape description, and road network
formation. First, road primitives were detected with the assistance of users; then, road
centres were extracted via kernel-based density estimation; and graph theory was used
to represent the road shape for improving accuracy. Khesali et al. (2016) proposed a
framework by fusion of radar satellite and high resolution optical images for semi-
automatic road extraction. They developed two methods in their framework, one is
based on neural network and another is knowledge based. Despite these methods being
accurate and having the ability to can extract high quality road networks, their require-
ments of user input will dramatically reduce the efficiency and increase the labour cost.
Furthermore, to incorporate these methods even with minimal user interactions into a
fully automatic workflow is difficult.

A natural alternative to semi-automatic methods is automatic methods. The most
straightforward automatic approaches are to extend semi-automatic ones with a road
seed point detection stage. Barzohar and Cooper (1996) proposed geometric-probabil-
istic models for road detection. In their framework, roads were extracted by maximizing
a posteriori probability of the Gibbs Distributions, in which starting points were selected
based on intensity histograms. Hu et al. (2007) presented a road seeding algorithm
based on rectangular approximations. They obtained the local homogeneous region of
the seeds (called road footprint) with a spoke wheel operator and classified these
footprints based on a Bayes decision model. However, the performance of these meth-
ods seriously relies on the seed generation stage. Classification-based methods, where
remotely sensed image is segmented into road and non-road groups, have been
proposed in (Mantero, Moser, and Serpico 2005; Song and Civco 2004). They usually
share a common framework with stages of feature description and test set classification.
In the first step, training and test set are represented by geometric or radiometric
features, such as gradient, intensity, colour, length, shape and so on. Then, a classifier
(e.g. Support Vector Machine (SVM), Bayes decision tree) is adopted to segment the
image. Unfortunately, it is difficult to select suitable features, and samples of training
sets are needed for supervised classification algorithms. In the work of Ghamisi and
Benediktsson (2015), an effective feature selection strategy for road extraction that is
based on particle swarm optimization and genetic algorithm is presented. Wang et al.
(2015) introduced a deep convolutional neural network (DNN) for this task, which is a
very famous deep learning technique in computer vision and machine learning.
Mathematical morphology (MM), a widely used method, detects roads based on a
shape structuring element. Guo, Weeks, and Klee (2007) exploited mean-shift clustering
algorithm in Intensity–Hue–Saturation (HIS) colourspace for this task and used condi-
tional mathematical morphology to improve the performance. Shi, Miao, and Debayle
(2014) introduced a general adaptive neighbourhood mathematical morphology
(GANMM) to perform spatial–spectral classification. However, MM-like methods are not
sufficiently flexible for complicated road scenes, especially for images with multiple
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types of structures. Knowledge-Based prior is also a powerful technique to produce road
networks. For instance, Trinder and Wang (1998) proposed a knowledge-based model
which includes the relationship between roads and the properties of roads. A knowledge
prior about road junctions was introduced by Negri et al. (2006), and a Markov random
field (MRF) was applied to describe the road networks. A higher-order probabilistic
(abbreviated HOP) Conditional random field (CRF) is developed to model the observa-
tion prior in the literature (Wegner, Montoya-Zegarra, and Schindler 2013). Wegner
developed (2015) a probabilistic representation of road networks. Traditional idea of
minimum cost paths is combined with the CRF. However, this method generates nearly
15,000 superpixels in order to provide enough paths, which will significantly increase the
processing time and physical memory.

In other studies, additional information (such as lidar data, multi-view images, and
image- lidar fusion) is also explored for automatic road extraction. A multi-view image
based method is developed by Hinz and Baumgartner (2003), in which redundancies
were exploited to predict the occlusions and describe the roads. More recently, Hu et al.
(2014) presented a lidar -based framework with impressive performance called MTH
(mean shift, tensor voting, Hough transform), of which the key idea was to effectively
extract geometric primitives of road candidates and to separate non-road regions from
the roads. Ferraz, Mallet, and Chehata (2016) designed an approach for forested moun-
tainous areas based on fine digital terrain models (DTMs). First, they adapted a super-
vised Random Forest classifier to extract potential road patches. Then, they built a graph
to fill gaps created by occlusion. Finally, an object-based image analysis is applied.

In this article, we focus on the automatic road extraction task with only single image
since lidar data are expensive. We address four research problems listed as follows: (1)
how can we detect multiple object-based features to improve the robustness to noise,
such as noisy pixels in road regions, grasslands and buildings with similar colour; (2) how
can we represent the object-based features with a graph model for homogeneous
region merging to make the geometric properties of roads more distinct; (3) how can
we exploit a Gaussian mixture model (GMM) to cluster these object-based segments; (4)
how can we describe the segments with two customized shape features for selecting the
true road layer and filtering outliers?

2. The proposed road extraction approach

2.1. Overview

Figure 1 shows the schematic diagram of the proposed approach. The first stage, i.e.
superpixel segmentation, is to segment the input image into small homogeneous
regions by adopting an entropy rate superpixel (ERS) (Liu et al. 2011) algorithm. The
pixels of a homogeneous region should have similar radiometric properties. Then,
multiple features, including intensity, colour in YUV colourspace, texture by local binary
patterns (LBP), are extracted to describe the superpixels. The subsequent steps are as
follows: (1) homogeneous region merging based on graph model, in which the nodes of
the graph are superpixels and edges are similarities of the multiple object-based
features. The purpose of this stage is to eliminate the over-segmentation phenomenon
and make the geometric properties of roads more distinct. (2) clustering via the GMM
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(Zivkovic 2004) with the object-based feature vector. (3) shape feature construction, in
which we design two geometric features called deviation of parallelism and narrow rate
to automatically recognize road layer and filter outliers.

2.2. Superpixel segmentation

Superpixel segmentation is a popular pre-processing stage for many applications of
computer vision and remote sensing such as image segmentation, image classification,
object detection, and image interpretation. A superpixel is regarded as a perceptually
uniform region, called homogeneous region in remote sensing. It is a group of spatially
connected pixels with similar intensity, colour, and texture, and therefore these pixels
are assumed to belong to the same object in the physical world.

The main advantage of using superpixel primitives instead of pixel primitives is
computational efficiency since superpixel representation can largely reduce the number
of primitives. For instance, in an N-classes unsupervised classification problem, the
number of hypothesis for a superpixel representation is Nm, while the number of
hypotheses for a pixel representation is Nn, where m and n(m � n) are the number of
superpixels and pixels, respectively. In addition, superpixels can be used for feature
description in an object level which is more robust than pixels.

Many open-source superpixel segmentation algorithms have been proposed in recent
years, such as simple linear iterative clustering (SLIC) (Achanta et al. 2012), ERS (Liu et al.
2011), etc. In this article, the ERS is adopted for this task. The ERS formulate the
superpixel segmentation from a clustering perspective, for which a clustering objective
function is developed:

Figure 1. The schematic diagram of the proposed method. (a) input image; (b) superpixel segmen-
tation via ERS; (c) detection of multiple features, including intensity, colour, and texture; (d)
homogeneous region merging; (e) clustering via Gaussian mixture model (GMM); (f) outlier filtering;
(g) output image with road layer.
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max
A

HðAÞ þ λBðAÞ subject to A � E andNA � K; (1)

where E and V denote the set of edges and the set of vertices of a graph G ¼ ðV; EÞ,
respectively; K (1000 in our experiments) is the number of superpixels; A is a subset of
edges. The goal of Equation (1) is to select a subset of edges A 2 E such that the graph
G ¼ ðV;AÞ consists of K connected subgraphs, which is a graph partition problem. NA is
the number of connected subgraphs. The first term HðAÞ represents the random walk’s
entropy rate on graph G ¼ ðV;AÞ, which supports homogeneous regions – each seg-
mented superpixel belongs to the same object in the physical world; λ � 0 is the weight
of the balancing term BðAÞ; whereas the second term BðAÞ represents the balancing
term, which balances the sizes of homogeneous regions – each segmented superpixel
contains a similar number of pixels. Figure 1(b) shows an example result of the ERS.

2.3. Feature description

To merge or to classify superpixels, similarity measured by feature vector should be
defined. As a superpixel is a group of pixels with similar intensity, colour, and
texture, these three types of low-level features are chosen to compute the similarity
statistics.

We describe intensity and colour features in YUV colourspace since it minimizes the
correlation between its three channels. In this model, Y stands for luminance channel
(intensity); U and V stand for chromaticity channels (colour). Unlike traditional
approaches, the median value is used instead of histogram technique for efficiency.
For instance, the intensity and colour features of a superpixel are only a three-element
vector for median value representation, while three 1D 256-bin histograms for histogram
representation.

The texture feature is an important cue for coherent object-based region merging.
The LBP (Ojala, Pietikäinen, and Harwood 1996) is a successfully applied operator for
texture description. The central idea of LBP is to use the signs of differences with
neighbouring pixels to describe image. It has been proved to be very efficient and
invariant to monotonic illumination changes. Ojala, Pietikainen, and Maenpaa (2002)
developed a variant of the LBP, called riu2-LBP, to extend the original LBP to be invariant
to rotation and scale changes while not decreasing the computational efficiency of the
original one. The riu2-LBP has been used for many computer vision applications, e.g.
texture classification, video foreground/background segmentation, face recognition, and
distinct region description. In our work, we introduce the riu2-LBP operator for texture
description of superpixels, and the feature vector of each superpixel is a 10 bin
histogram.

2.4. Graph-based homogeneous region merging

The ERS would segment an image into a fixed number of superpixel primitives. However,
groups of nearby superpixel primitives are likely to belong to the same physical object
due to the inherent property of over-segmentation. To eliminate this phenomenon, we
develop a homogeneous region merging algorithm based on graph representation of
these superpixel primitives.
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Let G ¼ ðV; EÞ be an undirected graph, where V represents the vertex set and E is a
set of edges. In our algorithm, the vertices vi 2 V are superpixel primitives, and the
edges ðvi; vjÞ 2 E are pairs of nearby superpixel primitives. A weight wðvi; vjÞ is given to
the edge ðvi; vjÞ 2 E for measuring the similarity between superpixel vi and superpixel vj.
As indicated earlier, we have obtained the feature vectors of superpixel primitives, thus,
wðvi; vjÞ is defined by

wðvi; vjÞ ¼ α Ii � Ij
�� ��þ β Ci � Cj

�� ��þ ð1� α� βÞ Hi � Hj

�� ��
subject to 0 < α < 1; 0 < β < 1; 0 < ð1� α� βÞ < 1;

(2)

in which I, C, and H denote the intensity feature, colour feature, and texture histo-
gram of the superpixel, respectively; α and β are coefficients (set to be 1/3 in our
experiments). Note that all these three types of features are normalized to range of [0, 1].

The goal of this stage is to merge the similar superpixels. In other words, it can be
regarded as a graph partition problem, in which superpixel set V is divided into disjoint
subsets S such that each subset is a connected component si with similar superpixels.
This means that the weights of edges inside a component si should be relatively low,
while the weights of edges between two components si and sj should be relatively large.
Similar to the literature (Felzenszwalb and Huttenlocher 2004), internal difference and
external difference are used in this algorithm. As defined by Felzenszwalb, the internal
difference IntðsiÞ of component si is the maximum edge weight of si, and the external
difference Extðsi; sjÞ between two components si and sj is the minimum edge weight
connecting si and sj. Intuitively, if components si and sj cannot be merged, the external
difference Extðsi; sjÞ should be larger than at least one of the internal differences, IntðsiÞ
and IntðsjÞ. Thus, the steps of our homogeneous region merging algorithm can be
summarized as follows, and a sample result is shown in Figure 1(d):

Step (1) Construct the graph G ¼ ðV; EÞ with vertices representing the superpixel
primitives and edge weights representing the similarities of nearby superpixels mea-
sured by intensity, colour, and texture features.

Step (2) Sort edge set E by non-decreasing order according to weights and set each
superpixel to be an independent component s0i of the initial subsets S0. The internal
difference η of each component is set to be 0.1 since the number of edges inside the
component is 0.

Step (3) For the first edge ðvi; vjÞ, we assume that vi belongs to component s0i of
S0and vj belongs to component s0j of S

0. If wðvi; vjÞ � minðIntðs0i Þ; Intðs0j ÞÞ and s0i �s0j then

components s0i and s0j can be merged to obtain subsets S1. Otherwise S1 ¼ S0. Do this

step for the remainder edges and output the Sk as the result (k is the number of edges).
Step (4) Merge the superpixel primitives inside each component ski to get a new

superpixel and form feature vector of the new superpixel.
The main advantage of our homogeneous region merging algorithm is to make the

geometric properties of roads more distinct, which is very important in the road layer
recognition and outlier filter stage. The roads are long and parallel linear segments,
however, superpixel segmentation would divide roads into small pieces, which will
decrease the distinction between roads and other objects. Furthermore, homogeneous
region merging algorithm will reduce the number of primitives.
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2.5. Object-based clustering via Gaussian mixture model

After merging, neighbouring superpixels are likely to belong to different objects, while
disjoint superpixels may be the same object. The goal of road extraction is to separate
road areas from non-road areas. For this purpose, we first cluster these superpixel
primitives into several classes based on the GMM such that roads are gathered into a
category. The GMM, a parametric probability density function, is widely applied in
computer vision and pattern recognition. It assumes that the distribution of the data
can be modelled by a mixture of Gaussian distributions. Thus, the probability density
function is a combination of Gaussian densities:

pðx ΘÞ ¼
Xi¼1

t

λigiðx
�����

�����ui; δiÞ; (3)

where function gið�Þ denotes Gaussian density; x is feature vector; ui and di are the
mean vector and the covariance matrix, respectively; t is the number of classes (t ¼ 4
in our experiments). λi is the probability of a superpixel belonging to the i-th class

and satisfies ðPt
i¼1

λiÞ ¼ 1; Q ¼ λi; ui;dif gti¼1.

We use the merged superpixels as clustering primitives and three types of features
(intensity, colour, texture) to describe each superpixel. Thus, the dimension of feature
vector x is 13, including 1 dimension of intensity, 2 of colour, and 10 of texture. This
clustering algorithm will be very efficient since the total number of clustering primitives
and feature dimension are very small (1000 and 13, respectively). See in Figure 1(e), the
image is roughly classified into four classes, i.e. roads, buildings, grasslands, and others.

2.6. Outlier filtering based on shape features

Roads have two main geometric properties: (1) the edges of both sides of a road are
almost parallel; (2) a road is an object which is long and narrow, like a linear feature.
Based on these observations, we define two shape features, called deviation of paralle-
lism (DoP) and narrow rate (NR), to automatically recognize the true road layer and
remove outliers (e.g. some wrongly clustered buildings and grasslands in Figure 1(e)).
The definition of DoP and NR are as follows:

The DoP is the deviation of the width of a merged superpixel. It reflects the
parallelism of this superpixel. The smaller DoP represents that the edges of both sides
of the superpixel are more parallel. The NR is the ratio of the length and the width of the
superpixel. A superpixel with smaller DoP and larger NR is more likely to be a road
segment.

In details, the contour edge of each superpixel primitive is firstly tracked. We sample n
points ðp0; :::; pnÞ from the edge and calculate their corresponding normal direction
ðd0; :::; dnÞ based on their neighbourhoods. Then, the points ðp0; :::; pnÞ are projected
along their normal direction ðd0; :::; dnÞ, intersecting at points ðq0; :::; qnÞ. The length of a
straight line piqiði ¼ 0; :::; nÞ is denoted by lpiqi (Figure 2). As can be seen, most sampled
points are located at segments along the road direction, and their normal projection
distances (the red-dotted line) are almost equal to the width of the road since the edges
of both sides of a road are almost parallel. However, there are still some points on the
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segments vertical to road direction, such as p0 and p5. Their normal projection distances
lp0q0 and lp5q5 (blue-dotted line) are outliers for computing the DoP and NR. To filter
outliers, the normal projection distances lpiqiði ¼ 0; :::; nÞ are sorted by non-decreasing
order, then, 20% of maximum values and 20% of minimum values in lpiqiði ¼ 0; :::; nÞ are
discarded, obtaining the cleaned normal projection distances ðl0; :::; lmÞ. Finally, two
shape features (DoP and NR) are defined. The DoP and NR reflect the parallelism and
linearity of a road, respectively. The DoP is the maximum deviation between the cleaned

normal projection distances ðl0; :::; lmÞ and the average distance �l of ðl0; :::; lmÞ. The NR is
the ratio of the length and the width of a road. The width of a road is approximately

equal to the average distance �l. Thus, the formulas of deviation of parallelism (DoP) and
narrow rate (NR) are as follows:

DoP ¼ maxðkli��lkÞ
�l

ði ¼ 0; :::;mÞ
NR ¼ c=2��l

�l

(
; (4)

in which c is the perimeter of a road superpixel contour.
As mentioned earlier, we have classified the image into several categories. We

calculate the average values of DoP and NR for each category layer and pick the layer
with lowest DoP value and highest NR value as the road layer. Then, we remove the
wrongly classified superpixel primitives in road layer which do not satisfy the following
equation, and a sample cleaned road layer result is shown in Figure 1(f):

DoP < ε
NR > τ;

�
(5)

where ε and τ are threshold parameters.
To fill gaps created by shadows and occlusions in the road segments, we apply a

simple but efficient gap-connecting strategy. The road centre lines are firstly extracted
from the detected road layer. All the pixels of the centre lines are organized as a k-d tree
structure and the end points of the centre lines are detected. Then, for each end point ei,
we search its neighbours Nei (the ones on the same centre line with ei are discarded) in
the k-d tree around a circular region with radius r (r ¼ 15m in our experiments if there

Figure 2. The illustration of constructing DoP and NR. First, the contour of a superpixel is tracked
and some samples are generated (black dot); then, these samples are projected into the other side
of the superpixel (red dot) and the normal distances lpiqiði ¼ 0; :::; nÞ can be computed. After
removing outliers (blue-dotted line), the DoP and NR can be calculated by cleaned normal distances
(red-dotted line). See text for details.
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are no special instructions). If there is an end point in Nei , connecting them. Otherwise,
end point ei will be connected with the centre line with the most neighbours of ei.
Finally, the superpixels where the connected line segments located are added into the
road layer. To obtain the cleanest road layer, shape features DoP and NR with better
threshold are adapted again.

3. Experiments and evaluation

We evaluate the proposed method on three different remote-sensing datasets. The first
one (Vaihingen) is provided by ISPRS Test Project for 3D Reconstruction and Urban
Classification (Cramer 2010). This semantic labeling dataset consists of 33 tiles from
digital aerial images acquired by an Intergraph/ZI DMC. These images are pan-shar-
pened colour infrared images with a ground resolution of 0.08m. The dataset is challen-
ging since road detection task is seriously affected by shadows and occlusions. The
second dataset (EPFL, École polytechnique fédérale de Lausanne (in French)) Turetken et
al. 2013 consists of suburban ortho-images from Google Earth, captured by Turetken. Its
ground resolution is about 1 m. We only use three images from the EPFL-dataset for
comparison with two state-of-the-art methods, because these two methods only pub-
lished their results of the selected three images. We also collect some images (Internet)
with fewer shadows and occlusions from different scenes (e.g. flyovers, rural area,
residential area, mountainous terrain, etc.).

3.1. Evaluation measures and parameter study

Three standard evaluation metrics widely adapted in the road detection task, i.e. complete-
ness, correctness, and quality, are reported in this article. Their definitions are as follows:

Completeness ¼ ðTPÞ
ðTPÞþðFNÞ � 100%

Correctness ¼ ðTPÞ
ðTPÞþðFPÞ � 100%

Quality ¼ ðTPÞ
ðTPÞþðFPÞþðFNÞ � 100%;

8>><
>>: (6)

where TP, FN, and FP are true positive, false negative, and false positive, respectively.
True positive is the number of road pixels correctly identified; false negative is the
number of road pixels wrongly identified; false positive is the number of non-road pixels
identified as road pixels.

There are five main parameters in the proposed framework: K , η, t, ε, and τ. Parameter
K is the number of superpixels. Large values of K will result in over-segmentation while
too small values may produce under-segmented results. Parameter η is an internal
difference threshold that decides if two superpixels can be merged. Parameter t is the
number of clustering classes. Generally, the pixels of an image may be clustered into
four classes, include roads, buildings, grasslands, and others. ε and τ are threshold
parameters for shape features DoP and NR, respectively, which are used to filter outliers.

We study the parameters K , η, t, ε, and τ on the Internet dataset. We perform four
independent experiments, where in each experiment, only one type of parameters is
variable and the others are constant. The details can be found in Table 1. The results are
reported in Tables 2–5.
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According to the results, we can learn that: (1) small values of K perform much
badly than large values due to the under-segmentation phenomenon. K ¼ 2000
only achieves a slight improvement at the cost of much more running time
compared with K ¼ 1000. Because the sizes of the images in the three datasets
are about 1000 × 1000 pixels, K ¼ 1000 is enough to avoid over-segmentation

Table 1. The details of parameter settings.
Experiment Variable Fixed parameters

Parameter K study K ¼ ½200; 500; 1000; 1500; 2000	
η ¼ 0:1,t ¼ 4,

ε ¼ 0:3
τ ¼ 1:5

�
Parameter η study η ¼ ½0:05; 0:1; 0:2; 0:3; 0:4	

K ¼ 1000, t ¼ 4,
ε ¼ 0:3
τ ¼ 1:5

�
Parameter t study t ¼ ½3; 4; 5; 6; 7; 8	

K ¼ 1000, η ¼ 0:1,
ε ¼ 0:3
τ ¼ 1:5

�
Parameter

ε
τ

�
study 1

0

�
;

0:3
1:5

�
;

0:25
2

�
;

0:2
2:5

�
;

0:15
3

�
;

0:1
3:5

�� �
K ¼ 1000, η ¼ 0:1,t ¼ 4

Table 2. The results of parameter K .

Metric

K , η ¼ 0:1, t ¼ 4, ε ¼ 0:3, τ ¼ 1:5

200 500 1000 1500 2000

Completeness (%) 81.0 85.4 89.4 90.8 89.6
Correctness (%) 77.4 82.1 89.0 88.9 90.4
Quality (%) 65.5 72.0 80.5 81.6 81.8

Table 3. The results of parameter η.

Metric

η, K ¼ 1000, t ¼ 4, ε ¼ 0:3, τ ¼ 1:5

0.05 0.1 0.2 0.3 0.4

Completeness (%) 82.2 89.4 92.6 76.6 79.4
Correctness (%) 93.8 89.0 82.3 76.8 67.8
Quality (%) 78.0 80.5 77.9 62.2 57.7

Table 4. The results of parameter t.

Metric

t, K ¼ 1000, η ¼ 0:1, ε ¼ 0:3, τ ¼ 1:5

3 4 5 6 7 8

Completeness (%) 94.0 89.4 91.0 88.1 84.2 83.1
Correctness (%) 77.0 89.0 87.4 90.5 92.6 92.3
Quality (%) 73.4 80.5 80.4 80.6 78.9 77.7

Table 5. The results of parameter ε and τ.

Metric

ε
τ

�
, K ¼ 1000, η ¼ 0:1, t ¼ 4, ε ¼ 0:3, τ ¼ 1:5

1
0

�
0:3
1:5

�
0:25
2

�
0:2
2:5

�
0:15
3

�
0:1
3:5

�

Completeness (%) 94.1 89.4 88.6 86.9 84.9 78.7
Correctness (%) 66.3 89.0 91.4 93.4 94.2 96.4
Quality (%) 63.7 80.5 81.7 81.9 80.7 76.5
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phenomenon. Thus, parameter K is relative to the image size, namely, large values
of K should be selected if the image size is large. (2) the correctness is inversely
proportional to η. The completeness curve rises first and then falls. Some road
superpixels are not combined if η is small and some other objects are merged with
roads if η is large. Both two cases may result in poor completeness performance
due to the outlier filtering. In our experiment, η ¼ 0:1 gets the best quality accu-
racy. (3) Parameter t has small influence to the results compared with other
parameters. In our dataset, the pixels of an image can usually be clustered into
four classes, thus, the quality accuracy decreases if t decreases from 4. The correct-
ness increases while the completeness decreases when t increases from 4. (4) the
shape feature constraints can largely improve the quality performance. The correct-
ness is proportional to the feature constraints, while the completeness is inversely
proportional. The best performance is achieved at ε ¼ 0:2 ; τ ¼ 2:5f g; however, we
choose ε ¼ 0:3 ; τ ¼ 1:5f g in our experiments. We can get better performance on
the Vaihingen dataset when the shape feature constraints are relaxed, since this
dataset suffers from shadows and occlusions which make the road structure irre-
gular and complex. We fix K ¼ 1000, η ¼ 0:1,t ¼ 4, and ε ¼ 0:3 ; τ ¼ 1:5f g for the
following experiments.

3.2. Vaihingen

The road structure in Vaihingen dataset is irregular and complex. There are many main
roads in this data, with shadows and occlusions. Shape features of roads are less distinct
and some buildings are similar to roads in colour and texture, making road detection
problem more challenging. Some visual results are depicted in Figure 3. As can been
seen, main roads are detected well by our method. However, due to the effect of
shadows and occlusions, some road pixels are missed (red labelled pixels in the figure).
This is the main factor which affects the accuracy of the proposed method. Fortunately,
shadows could be detected and removed in a preprocessing stage for practical applica-
tions. To make a fair comparison, there is no image preprocessing stage in all of our
experiments.

We compare the proposed method with some state-of-the-art methods, including
template matching (TM) (Hu and Tao 2005), HOP (Wegner, Montoya-Zegarra, and
Schindler 2013), and DNN (Wang et al. 2015). There is an important reason for choosing
these algorithms for comparison, i.e. these methods used the Vaihingen as the test
dataset and reported their corresponding quantitative evaluation results in their works.
So, we can easily compare the proposed method with their reported results.
Quantitative results are reported in Table 6.

The proposed method without connecting ranks 3, 1, and 2 in terms of complete-
ness, correctness, and quality compared with other methods, respectively. With
connecting, our method achieves the best in all these three metrics. In our methods,
we apply a simple connecting strategy. This strategy achieves 10.0%, 4.2%, and
10.4% growth rates in terms of completeness, correctness, and quality, respectively.
The completeness of DNN is higher than our method without connecting and the
correctness is almost the same. Compared with HOP, its completeness is slight better
than the proposed method without connecting while its correctness and quality are
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worse than ours. The reason is that our method adopts shape features to filter
outliers for guarantee of correctness. The shadows and occlusions will divide the
roads into irregular pieces, which leads to false negatives and decreases the com-
pleteness. Fortunately, a simple connecting strategy will make our method definitely
better than HOP. DNN also gets very impressed correctness and quality accuracy. If a
post-processing stage is performed on the DNN results, such as connecting or
grouping in MTH, DNN may be even better than the proposed method with con-
necting. However, the major limitations of DNN are that it needs a large number of

Figure 3. Road networks extracted in three patches of the Vaihingen. First row: input images;
second row: results; third row: ground truth. Green true positives, blue false positives, red false
negatives.

Table 6. Quantitative evaluation on the Vaihingen dataset.
Method Completeness (%) Correctness (%) Quality (%)

TM 62.1 49.5 37.9
HOP 69.4 75 55.6
DNN 74.4 83.2 64.7
Proposed 66.2 83.3 58.3
Proposed + connecting 76.2 87.5 68.7
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labeled training sets and relies on high performance graphic processing unit (GPU)
devices, which largely increase the artificial and hardware costs.

3.3. EPFL

The images of EPFL dataset are with lower spatial resolution and in greyscale with no
colour information. Fortunately, there are only overhanging trees on the roads. Shadows
are fewer than in the Vaihingen test data. In addition, the road structure is more regular
and simple. To compare with two state-of-the-art methods, i.e. Turetken’s method
(Turetken et al. 2013) and Wegner’s method (Wegner, Montoya-Zegarra, and Schindler
2015), three example images with results and ground truth provided by the authors are
chosen as the test data. In the feature description stage, only intensity and texture are
used to describe superpixels since there is no colour information. Qualitative and
quantitative results are shown in Figure 4 and Table 7, respectively.

From Figure 4, we can see that the proposed method and Wegner’s method can
effectively avoid false positives while Turetken’s method produces much more gross
errors (blue-labeled pixels in the figure). It is interesting to note that the Turetken’s
method provides the smoothest road boundary results. This could be expected, as
pointed out in the literature (Wegner, Montoya-Zegarra, and Schindler 2015),
Turetken’s method estimates the width of roads to as a constraint, which works
well for the datasets with unoccluded roads with nearly constant width, just like the
EPFL dataset. Our method gives fewer undetected roads pixels (known as false
negative) than Wegner’s method (red labeled pixels in the figure). There are many
unconnected small pieces in Wegner’s road results. This may be caused by the large
number of superpixels needed by the method. It generates nearly 15,000 superpixels
in order to provide enough paths. However, it also divided the images into too small
pieces in the meantime, which makes the extraction task more challenging. In
addition, the large number of superpixels will significantly increase the processing
time and physical memory.

From the analysis of Table 7, we can draw similar conclusions as from the visual
results. In terms of correctness, our method and Wegner’s method achieve 8.2% and
14.8% improvements compared with Turetken’s method, since there are many false
positives produced by Turetken’s method. For this data, our method does not use
colour information. Thus, some road pixels have the same intensity and texture with
their surrounding lands, which leads to wrongly merged superpixels. This may be the
reason why our method could not perform as well as Wegner’s method. Turetken’s
method provides the smoothest road boundaries. So, its completeness is the highest
which is slightly higher than the proposed method. Both Turetken’s method and ours
are much better than Wegner’s method, achieving 8.7% and 8.3% gains, respectively.
Quality combines both completeness and correctness metrics into a single one which
reflects the overall performance. As can be seen, our method gets the best perfor-
mance, achieving 6.5% and 1.5% gains, respectively. In addition, the standard devia-
tion of our method is smaller than others, which means that our method is more
robust and stable.
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3.4. Internet

The dataset collected from internet have fewer shadows and occlusions. Figures 5
(a–e) are provided by (Zhang and Yuan 2011), in which (a), (b), (e) from the
‘Residential’ category and (c), (d) from the ‘Viaduct’ category. These images are

Figure 4. Road networks extracted in three patches of the EPFL. First row: original images; second
row: Turetken’s results; third row: Wegner’s results; fourth row: our results; fifth row: ground truth.
Green true positives, blue false positives, red false negatives.
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collected from Google Earth, with ground resolution of 0.5 m. Figure 5(f) is a UAV
image with ground resolution of 0.2 m. Figure 5(g) is provided by DigitalGlobe
(DigitalGlobe, 2015). This image is acquired by WorldView-3 with 0.3 m ground
resolution. Figure 5(h) is an aerial image with 0.3 m space resolution. Figure 5(i) is
an IKONOS image with 2 m space resolution provided by Mayer (Mayer et al. 2006).
The mountainous terrain region covered by this image is 3.2 km×3.2 km and the
length of the roads in the image is over 10 km. All images except Figure 5(i) are
pan-sharpened RGB images. Figure 5(i) is a grey image. Figure 5 and Table 8 give
the qualitative and quantitative results, respectively.

Main roads are well extracted and the boundaries are also quite smooth.
However, there are still a small number of road primitives undetected. Since on
the one hand overhanging trees will affect the extraction algorithm and on the
other hand some unmerged road superpixels with small DoP or NR will be removed
as outliers, as in the case of Figures 5(b, h, and i). In addition, some roads are not
found in our results. Fortunately, these road segments could be connected by
performing a more effective post-processing stage such as the grouping in MTH.
Table 8 reports that our method achieves almost 90% accuracy in completeness and
correctness, and 80% accuracy in quality. This is a very attractive performance for
practical applications with shadow removal preprocessing stage to reduce time and
labour cost.

4. Discussion and conclusion

4.1. Limitation

As the experiments reflected, there are still some problems in our algorithm that
need to be resolved. First, shadows and occlusions dramatically affect the detection
accuracy of our method. For the Vaihingen dataset, only 76%, 87%, and 69%
accuracy in completeness, correctness, and quality are achieved. In contrast, our
method achieves almost 90% accuracy in completeness and correctness, and 80%
accuracy in quality for Internet dataset. The major distinction between the two

Table 7. Quantitative evaluation on the EPFH dataset.
Method Image Completeness (%) Correctness (%) Quality (%)

1 88.0 79.8 71.9
2 93.3 69.9 66.6

Turetken 3 82.1 75.5 64.8
Mean 87.8 75.1 67.8
SD 5.6 5.0 3.7
1 79.4 88.5 71.9
2 75.0 90.1 69.8

Wegner 3 82.9 91.2 76.8
Mean 79.1 89.9 72.8
SD 4.0 1.4 3.6
1 86.9 81.5 72.5
2 85.8 82.1 72.2

Proposed 3 89.5 86.2 78.3
Mean 87.4 83.3 74.3
SD 1.9 2.6 3.4
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datasets is the shadows and occlusions. So, in practical applications, shadow
removal is necessary. Second, our method is not suitable for small-roads. The
definition of ‘small-road’ relies on its width. The small-roads will be wrongly
segmented in the superpixels generation stage. This is an inherent drawback of
our method. Thus, our method is designed for high-resolution remote-sensing
images road extraction task.

Figure 5. Road networks extracted in eight images of the Internet. Left images of (a)–(i): input
images; right images of (a)–(i): our results. Green true positives, blue false positives, red false
negatives.
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Figure 5. (continued).

Table 8. Quantitative evaluation on the Internet dataset.
Image Completeness (%) Correctness (%) Quality (%)

1 90.2 91.1 82.9
2 87.3 93.4 82.2
3 93.4 92.0 86.4
4 93.8 94.3 88.8
5 88.7 84.0 75.9
6 99.1 92.1 91.4
7 76.1 93.5 72.3
8 80.6 86.5 71.6
9 91.8 77.9 72.8
Mean 89.0 89.4 80.5
SD 7.0 5.0 7.6
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4.2. Conclusion

This article has proposed an unsupervised road detection method based on a single
remotely sensed image, which achieves very impressing extraction performance. This
method is fully automatic and no human interactions even for preparation of training
sets are needed. It consists of five major stages, i.e. superpixel segmentation, feature
description, homogeneous region merging, clustering via the GMM, and outlier
filtering. First, images are segmented into object level. Second, over-segmented
superpixels are merged based on three low-level object-based features. Then, these
merged superpixels are classified into different categories via Gaussian mixture
model. Finally, outliers are removed for improving accuracy. These steps are compact
and each step is the basis of the next steps. The graph-based region merging
algorithm could especially eliminate the over-segmentation phenomenon and make
the geometric properties of roads more distinct. In addition, we make full use of
shape properties of the roads and define two shape features, called deviation of
parallelism and narrow rate, to recognize the roads. The experimental results on the
ISPRS Vaihingen dataset and EPFL dataset demonstrate the power of our method,
which show that the proposed method could achieve even better performance than
some recent state-of-the-arts. We also show how good results could be obtained on
datasets with fewer shadows, which reflects the potential of our method integrated
with shadow detection algorithm for practical applications. As discussed earlier, some
problems still need to be resolved, which will be the future work of us.
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