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ABSTRACT
Multispectral (MS) and panchromatic (Pan) image fusion, which is
used to obtain both high spatial- and spectral-resolution images,
plays an important role in many remote-sensing applications such
as environmental monitoring, agriculture, and mineral exploration.
This article presents an image fusion framework based on the
spatial distribution consistency. First, a YUV transform is adopted
to separate the luminance component from the colour compo-
nents of the original MS image. Then, the relationships between
the ideal high-resolution multispectral (HRMS) colour components
and the Pan band are established based on the spatial distribution
consistency, and finally an inverse transform is employed to obtain
the fused image. In this article, two types of relationship models
are presented. The first model stems from the physical meaning of
the assumption and uses a local linear model to describe it. The
second model directly uses its algebraic meaning to design the
objective cost function and obtains the global optimal solution.
The proposed two models are compared with 15 other widely
used methods on six real remote-sensing image data sets.
Experimental results show that the proposed method outperforms
the compared state-of-the-art approaches.
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1. Introduction

With the rapid development of remote-sensing technology, it is often difficult to meet
the needs of information extraction using single remote-sensing datum, which requires
a variety of remote-sensing data for information fusion. For example, land-usage classi-
fication, change detection, and map updates all require both high spectral- and spatial-
resolution images. However, being limited by the imaging technology, satellites such as
IKONOS, QuickBird, GeoEye, and WorldView-2 provide observation data that are gener-
ally composed of high spatial-resolution panchromatic (Pan) band and low spatial-
resolution multispectral (MS) image (Jiang et al. 2014). Therefore, the advantages of
different remote-sensing data should be synthesized to obtain both accurate spatial
information and spectral information. Image fusion technology is an effective way to
solve this problem, which has become an active topic in remote-sensing image
processing.

CONTACT Qingwu Hu huqw@whu.edu.cn School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan, China

INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017
VOL. 39, NO. 4, 1017–1041
https://doi.org/10.1080/01431161.2017.1395967

© 2017 Informa UK Limited, trading as Taylor & Francis Group

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 2
3:

38
 0

9 
N

ov
em

be
r 

20
17

 

http://orcid.org/0000-0002-9850-1668
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2017.1395967&domain=pdf


MS image and Pan band fusion, also called pansharpening, is a technique to merge
the low spatial-resolution MS bands with the high spatial-resolution Pan band of the
same satellite to produce a high spatial-resolution multispectral (HRMS) image. Several
detailed surveys on pansharpening can be found in Wang et al. (2005), Thomas et al.
(2008), Amro et al. (2011), and Vivone et al. (2015). Vivone et al. (2015) made a critical
comparison among the widely used pansharpening approaches and grouped them into
two categories, i.e. the component substitution (CS) methods and the multi-resolution
analysis (MRA) methods. The main idea of the CS methods is to transform the MS image
into other colour spaces and substitute a component such as luminance with the Pan
image. CS methods generally consist of five steps: up-sampling, positive transformation,
brightness matching, CS, and inverse transform (Amro et al. 2011). Approaches belong-
ing to this category include band-dependent spatial detail (BDSD) (Garzelli, Nencini, and
Capobianco 2008), Brovey transformation (Gillespie, Kahle, and Walker 1987), general-
ized intensity-hue-saturation (GIHS) (Tu et al. 2001), Gram–Schmidt (GS) spectral shar-
pening (Laben and Brower 2000), adaptive GS (GSA) (Aiazzi, Baronti, and Selva 2007),
intensity-hue-saturation (IHS) (Carper, Lillesand, and Kiefer 1990), principal component
analysis (PCA) (Chavez, Sides, and Anderson 1991), and partial replacement adaptive
component substitution (PRACS) (Choi, Yu, and Kim 2011). In addition, several recently
developed CS methods can be found in the literature (Xu et al. 2014). CS methods
usually provide good visual effects and spatial quality. However, they easily distort the
spectral information. The core idea of MRA methods is to inject the spatial details that
are decomposed from the Pan image into the resampled MS bands. The spatial details
can be obtained by several approaches: a trous wavelet transform (ATWT) (Vivone et al.
2014), ATWT using Model 2 (ATWT-M2) (Ranchin and Wald 2000), ATWT using Model 3
(ATWT-M3) (Ranchin and Wald 2000), additive wavelet luminance proportional (AWLP)
(Otazu et al. 2005), decimated wavelet transform (DWT) (Mallat 1989), high-pass filtering
(HPF) (Chavez, Sides, and Anderson 1991), decimated wavelet transform using an
additive injection model (Indusion) (Khan et al. 2008), generalized Laplacian pyramid
(GLP) (Aiazzi et al. 2002) with modulation transfer function (MTF) (MTF-GLP) (Aiazzi et al.
2006), and smoothing filter-based intensity modulation (SFIM) (Liu 2000; Wald and
Ranchin 2002).

Wang, Shi, and Atkinson (2016) reviewed another group of algorithms for pan-
sharpening, i.e. geostatistical solutions, and stated that geostatistical solutions have
the advantage of preserving the spectral information. Downscaling co-Kriging (DSCK)
(Pardo-Igúzquiza, Chica-Olmo, and Atkinson 2006) is a pansharpening algorithm for
Landsat ETM+ images, which considers the low spatial-resolution MS image as the
primary variable and the Pan band as the secondary variable. Spatially adaptive
downscaling co-Kriging (SADSCK) (Pardo-Iguzquiza et al. 2011) is an extension of
DSCK, which adds a spatially adaptive filtering scheme to change the co-Kriging
weights. Tang, Atkinson, and Zhang (2015) presented a post-processing step for
DSCK, which considered multiple-point statistics to increase the pansharpening accu-
racy. Wang, Shi, and Atkinson (2016) proposed an area-to-point regression Kriging
(ATPRK) method and its extension, adaptive ATPRK (AATPRK). ATPRK treats each
HRMS band as a linear transformation of the Pan band and considers the residuals
via area-to-point Kriging (ATPK) residual downscaling in the regression model for
spectral compensation.
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Variational methods have also received increasing attention. These methods usually
build the objective cost function based on certain assumptions and obtain the optimal
solution by minimizing the energy function. P+XS (Ballester et al. 2006) considers the up-
sampled MS image as the blurred HRMS image and builds the objective function based
on Brovey linear combination assumptions. Fang et al. (2013) proposed an iterative
method to alternately solve the blur model parameters and the pansharpened image
since the blurred kernel function of the P+XS (Panchromatic and MultiSpectral images)
method is difficult to estimate. Alternate variational wavelet pansharpening (AVWP)
(Möller et al. 2012) utilizes spectral ratio constraint to keep the spectral information,
and obtains the spatial information by minimizing the P+XS energy function terms.
These methods can preserve the spectral information well; however, the spatial informa-
tion may not be well-preserved, which may cause severe block effects on the image
edges. Chen et al. (2014) assumed that the fused image should be as consistent as
possible with the up-sampled MS image, and took the local spectral continuity and
gradient sparsity into account to obtain the global optimal solution. This method
considers the similarity of spectral continuity and inter-band spatial gradient simulta-
neously, and utilizes an optimization method based on iterative threshold contraction.
More recently, deep learning has also been applied for pansharpening. Huang et al.
(2015) proposed the deep neural network (DNN)-based image fusion method with pre-
training and fine-tuning stages. Masi et al. (2016) introduced a three-layer convolutional
neural networks (CNN) proposed for super-resolution into the pansharpening task.
Compared with the traditional CS and MRA methods, geostatistical solutions and varia-
tional methods have a common disadvantage in that the computational complexity is
extremely high. Such high computational complexity may prevent their usages in real
applications because pansharpening is usually a preprocessing step where tens of
seconds of processing time for a 512 × 512 pixels image is unacceptable.

This article presents a spatial consistency assumption, which supposes that the spatial
distribution of the HRMS image and the Pan band should be the same. That is, if the
values of the adjacent pixels in the Pan image are similar, the values of the adjacent
pixels in the MS image should be similar as well. Although Thomas et al. (2008) had
mentioned spatial heterogeneity, it is undeniable that spatial consistency also exists in
most of the satellite images, especially in high-resolution satellite images. In fact, spatial
consistency has been widely used in image-fusion methods, such as in Fang et al. (2013),
Chen et al. (2014), and Wang, Shi, and Atkinson (2016). They assumed that there was a
linear combination or other relationships between the intensity or gradient of the MS
image and the Pan band.

According to the physical and algebraic meaning of the spatial consistency assump-
tion, two modelling methods are presented to express the relationship between the Pan
and the MS image. The first method is based on a local linear model, which is compu-
tationally efficient. The second one finds the optimal solution of the global energy
function, with a very good accuracy. Our local linear method is similar to ATPRK.
However, there are several differences between them. First, ATPRK uses a linear trans-
formation to model the relationship between each MS band and the Pan band.
Differently, our method uses a more accurate model, i.e. the local linear model.
Second, our article presents a spatial consistency assumption and verifies this assump-
tion, which is the reason why we apply the local linear model. Third, ATPRK considers the
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residuals via ATPK residual downscaling in their model, which will largely increase the
computational complexity. For example, ATPRK takes 127 s on pansharpening of a
125 × 125 pixels MS image and a 500 × 500 pixels Pan band; in contrast, we solve the
local linear model efficiently, similar to the guided filter. We compare the proposed two
methods with 15 other widely used methods on six real remote-sensing image data sets.
The experimental results show that the proposed methods outperform the compared
state-of-the-art approaches.

2. Theory and method

2.1. The characteristics and verification of spatial consistency

Suppose that the MS image and the Pan band of the same satellite are accurately
registered. We assume that the pixels at the same location in the HRMS image and the
Pan band have similar spatial distribution, which is called spatial consistency. The
definition of spatial consistency is as follows: if the values of the adjacent pixels in the
Pan image are similar, the values of the adjacent pixels in the MS image tend to be
similar as well. Spatial consistency has the following two properties.

● Local extreme position in the MS image corresponds to the one in the Pan image.
● Change trend of the adjacent pixels of the MS image is consistent with the one of

the Pan image.

Figure 1 visually illustrates the spatial consistency prior, where each waveform
represents the spatial distribution of a line of pixels. As can be seen, waveforms 1–3
have the same extreme positions and are consistent local monotonicity, so they conform
to the spatial distribution consistency. In contrast, waveforms 4 and 5 do not satisfy the
above-mentioned properties, so they are not subject to spatial consistency.

To verify the correctness of the spatial consistency, this article collected 300 satellite
images with their corresponding Pan bands from Geoeye-1, Landsat 8 OLI, QuickBird,
SPOT 6, Worldview-2, and Worldview 3 as the verification data sets. We upscale (upscal-
ing factor is set to 2 for Landsat 8 OLI and 4 for other satellites) the collected satellite

Figure 1. Illustration of spatial consistency.
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images and Pan bands to obtain the MS images and the Pan images, respectively, and
treat the original satellite images as the ideal HRMS images. First, we calculate the
correlations among red (R), green (G), blue (B), and Pan bands. (The positive correlation
between bands is the necessary condition of spatial consistency, i.e. if the spatial
consistency is correct, the R, G, B, and Pan bands have positive correlations.) The
experimental results are shown in Table 1. As can be seen, there are strong positive
correlations among the R, G, B, and Pan bands (the average correlation coefficient is
0.897). Second, we randomly select 10 lines of pixels in each image and compare their
pixel intensity values. We find that the spatial distributions of the R, G, B, and Pan bands
are almost the same, which conform to the above-mentioned properties. Therefore, the
spatial consistency is reliable and effective. Figure 2 shows the spatial consistency on
some image rows. As shown, although the pixel intensity values of the R, G, B, and Pan
bands in the same position may be different, the extreme positions and local mono-
tonicity of the four bands are consistent.

2.2. The fusion framework based on spatial consistency

The proposed method is based on the YUV colour space, where Y represents the
luminance component, and U and V represent the colour components. The reason
why we use YUV colour space is just that YUV colour space can separate the luminance
component from the colour components of an image. Note that other colour spaces

Table 1. Correlations between R, G, B, and Pan bands.
Image band Pan &R Pan &G Pan &B

Correlation Coefficient 0.905 0.913 0.874
Standard Deviation 0.074 0.065 0.067

Figure 2. The spatial consistency between R, G, B, and the Pan band.
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may also be applied. The major contribution of this article is the verification and
modelling of the spatial consistency. The framework of the proposed method is given
in Figure 3. First, we perform a YUV transform on the original MS image to obtain the
colour channels U and V. Then, U and V are projected into channels UT and VT according
to the spatial resolution ratio between the MS image and the Pan band, where UT and VT
are the colour channels of the HRMS image with unknown values. Figure 4 (a) is the
projected result of the original MS image according to spatial ratio 4. In this figure, the
non-zero pixels (the interval is 4) come from the original MS image, and the zero pixels
are the unknown values to be estimated. Based on the spatial consistency constraint, the
remaining unknown values (e.g. the pixels with value 0 in Figure 4(b)) can be estimated
according to the known values in UT/VT and the corresponding values of the Pan band
(e.g. the pixels with value 1 in Figure 4(b)); then, the colour channels UHRMS and VHRMS of
the HRMS images without unknown values can be estimated. Finally, the fused HRMS
image is obtained by performing a YUV inverse transform.

In traditional CS methods, the colour components of the HRMS image are usually
obtained by considering upscaling operation on the original MS image, which makes the
colour components blurred, and results in spectral information loss. In contrast, the
proposed method uses the spatial consistency constraint to exactly estimate the colour
components of the HRMS image, which largely increases the spectral accuracy.
Therefore, the core of our method is to establish the relationship between the HRMS
image and the Pan image based on the spatial consistency assumption. We will provide
two relationship modelling methods next.

2.3. Local linear model

Based on the guided filter (He, Sun, and Tang 2013) and the guided filter-based fusion (Li,
Kang, and Hu 2013), we use a local linear model to represent the spatial consistency
between the MS image and the Pan band. The local linear model can well interpret the

Figure 3. The flow chart of the proposed framework. (a) MS projection and (b) partial unknown
values.
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physical meaning of the spatial consistency and totally satisfy the above-mentioned two
properties. The model describes the linear relationship between the ideal HRMS image (take
channel UT as an example) and the Pan band P, within a small window ωk centred at pixel k:

ρUT
ðxÞ ¼ akρPðxÞ þ bk;"x 2 ωk; (1)

where ðak; bkÞ are the linear coefficients, and ρUT
ðxÞ and ρPðxÞ are the intensity values of

UT and P at pixel x, respectively.
Equation (1) is a typical least squares problem. To solve the linear coefficient ðak; bkÞ,

we need to minimize the differences between the observed values and the calculated
values of the channel UT:

Eðak; bkÞ ¼
X
x2ωk

ððakρPðxÞ þ bk � ρUT
ðxÞÞ2Þ; (2)

where E is the objective cost function. To prevent ak from becoming too large, a
regularization term is added:

Figure 4. Unknowns of the proposed framework.

INTERNATIONAL JOURNAL OF REMOTE SENSING 1023

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 2
3:

38
 0

9 
N

ov
em

be
r 

20
17

 



Eðak; bkÞ ¼
X
x2ωk

ððakρPðxÞ þ bk � ρUT
ðxÞÞ2 þ εa2kÞ; (3)

where ε is a regularization parameter. Finally, the objective cost function becomes a
linear ridge regression model (Draper and Smith 2014), whose solution is

ak ¼
1
wj j
P
x2ωk

ρPðxÞρUT ðxÞ�μk�ρUT ðkÞ

σ2kþε

bk ¼ �ρUT
ðkÞ � akμk

�
; (4)

where μk and σ2k are the mean and variance of P in the local window ωk , respectively; wj j
refers to the number of pixels in window ωk ; �ρUT

ðkÞ ¼ 1
wj j

P
x2ωk

ρUT
ðxÞ is the mean of UT in

window ωk . Algorithm 1 summarizes our local linear fusion method.

Algorithm 1: pansharpening based on the spatial consistency
Input: the MS image and the Pan band
Output: pansharpened image

1. Transform the original MS image using YUV to extract the colour channels U and V.
2. Project U and V to obtain the HRMS image bands UT and VT according to the spatial
resolution ratio.
3. Build the relationship between the HRMS image and the Pan band via the local linear
model/global cost function, and estimate the unknowns in the HRMS image.
4. Perform an inverse YUV transform on the estimated HRMS to obtain the panshar-
pened image in the RGB colour space.

2.4. Global objective function model

Suppose x and y are adjacent pixels. According to spatial consistency, if the values of
x and y in the Pan image are similar, they should be similar as well in the ideal HRMS
image. Thus, from the algebraic meaning of spatial consistency, the above-men-
tioned relationship can be approximately expressed by minimizing the differences
between the pixel value ρUT

ðxÞ in the HRMS image and its weighted average of the
adjacent pixels:

EðUTÞ ¼
X
x

ðρUT
ðxÞ �

X
y2NðxÞ

wxyρUT
ðyÞÞ2; (5)

where EðUTÞ is an objective cost function, NðxÞ is a local window of the pixel x, and wxy is
the weight function whose sum is 1. If the pixel values ρPðxÞ and ρPðyÞ in the Pan image
are similar, wxy is assigned a large value; in contrast, if the difference between ρPðxÞ and
ρPðyÞ is large, wxy is assigned a small value. The following equation is used as the weight
function:

wxy / e�ðPðxÞ�PðyÞÞ2=2σ2x ; (6)

where σ2x is the variance of NðxÞ.
Equation (5) is the least square solution of equation (7):
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ρUT
ðxÞ ¼

X
y2NðxÞ

wxyρUT
ðyÞ: (7)

The error equation matrix can be expressed as

ΔV ¼ AX � L; (8)

where X is the unknown column vector; A is the coefficient matrix, where the values of
the diagonal elements are 1 and the values of the non-diagonal elements are � wxy ; and
L is the observation vector, which is composed of the original MS-projected image pixel
values, as in Figure 2(a). In equation (8), A and L are known, so the solution of X is

X ¼ ðATAÞ�1ðATLÞ: (9)

In this global objective function model, all of the pixel values are involved in the cost-
minimization procedure. The least squares method canminimize the cost function and reach
a global optimal solution. Algorithm 1 summarizes our global optimization fusion method.

3. Results

3.1. Data sets and experiment environment

Three hundred satellite images with Pan bands collected from Geoeye-1, Landsat 8 OLI,
QuickBird, SPOT 6, Worldview-2, and Worldview 31 are used as the test sets to evaluate
the proposed method. Detailed information about these images can be found in Table 2.
To obtain the reference images, we consider an upscaling operation according to the
spatial resolution ratios (upscaling factor is set to 2 for Landsat 8 OLI and 4 for other
satellites) between the MS images and the Pan bands. This strategy has been widely
applied for pansharpening evaluation, such as in Fang et al. (2013), Chen et al. (2014),
Masi et al. (2016), and Wang, Shi, and Atkinson (2016).

The proposed two methods, the local linear model (noted by Ours1) and the global cost
model (noted by Ours2), are compared with 15 widely used approaches summarized in
Vivone et al. (2015) to illustrate the benefits of the proposed spatial consistency prior. These
compared methods are BDSD, Brovey, GIHS, GS, GSA, PCA, PRACS, ATWT, ATWT-M2, ATWT-
M3, AWLP, HPF, Indusion, MTF-GLP, and SFIM. The source codes of these 15 methods are
publicly available.2 There are three main parameters in the proposed methods, namely the
size of window ωk , the regularization parameter ε, and the size of window NðxÞ. In the
following experiments, ωk is set to 64 × 64 pixels, ε is set to 0.01, and NðxÞ is set to 5 × 5
pixels. The parameters of the other compared methods are set according to their author’s
recommendations. All of the tests are completed on a single-core I5 CPU computer with
Matlab 2014.

Table 2. Detailed information of the collected six data sets.
Satellite sensor Resolution (m) Image size (pixel) Number of images

Geoeye-1 Pan: 0.41; MS: 1.65 512 × 512 50
Landsat 8 OLI Pan:15; MS: 30 512 × 512 50
Quickbird Pan: 0.55; MS: 2.16 512 × 512 50
SPOT-6 Pan:1.5; MS: 6 512 × 512 50
Worldview-2 Pan: 0.46; MS: 1.85 512 × 512 50
Worldview-3 Pan: 0.31; MS: 1.24 512 × 512 50
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3.2. Visual comparison

We first compare the visual appearance of these methods on six images that are
selected from the collected six data sets. The results are shown in Figures 5–10. For
better visualization, a 256 × 256 pixels sub-area cropped from each original result image
is shown. As can be seen, all methods can enhance the spatial resolution of the original
MS images, namely all fusion results are visually clearer than the upscaled MS images.
The performance of BDSD may be relative to the image sensors. For example, the results
of BDSD in Figures 5–6 are slightly blurred, the results in Figures 7–8 are sharpened, and
the results in Figures 9–10 suffer from severe image artefacts. The Brovey, GIHS, GS, GSA,
and PCA approaches suffer from strong spectral distortions. These methods usually have
low contrasts. The image colours of grass, trees, and white buidlings are changed, which
indicates spectral distortion. For instance, the trees in Figure 8 are brightened, whereas
the white buildings in Figure 9 are darkened by Brovey, GIHS, GS, and PCA; GSA turns
the green playground in Figure 7 to black. Although PRACS can preserve high spectral
quality, it may cause speckle noise, such as in Figure 6. In the MRA group, ATWT-M2 and
ATWT-M3 obtain over-smooth results (the results shown in the figures are severely
blurred) and fail to restore the detailed information. In other words, the spatial informa-
tion is poor in the results of ATWT-M2 and ATWT-M3. The ATWT, AWLP, HPF, Indusion,
MTF-GLP, and SFIM methods usually obtain results with over-enhanced details and suffer
from severe image artefacts. For example, the trees in Figure 7 seem to be divided into
small parts by these methods. In addition, AWLP and SFIM may also cause speckle noise
such as in Figure 7. Compared with these methods, Ours1 and Ours2 achieve better
visual appearance on these images. Both spatial and spectral properties are preserved;
as a result, their fused images are comparable to the reference image.

To provide more intuitionistic visual expression, Figure 11 shows the error maps (the
brighter the pixel, the larger the errors) between the fusion results and the reference
image of Figure 7 (the error range is [0–50] pixels, where errors larger than 50 pixels are
shown by 50). The spectral distortions, blurred edges, and image artefacts can be clearly
observed in these error maps. For example, the spectral distortions of the BDSD, Brovey,
GIHS, GS, GSA, and PCA methods are severe; the errors of white buildings or trees are
generally larger than 50 pixels. PRACS achieves the best performance among the CS
group. It has small errors except in the playground regions. Compared with the CS
methods, the MRA methods suffer from less spectral distortions. However, the MRA
methods suffer from information detail loss or image artefacts. For instance, the edges
in the error maps of ATWT-M2, ATWT-M3, and Indusion are much less sharper than the
other methods, namely their results preserve less-detailed spatial information; image
artefacts can be easily observed in the error maps of ATWT, AWLP, HPF, MTF-GLP, and
SFIM. Although some spectral distortions are still produced by the two proposed methods
(Ours1 and Ours2), their overall performances are much better than the other methods.

3.3. Quantitative analysis

Five spectral and one spatial metrics are selected to evaluate the pansharpening
quality of each method. The spectral metrics include relative average spectral error
(RASE) (Ranchin and Wald 2000), relative global-dimensional synthesis error (ERGAS)
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(Ranchin and Wald 2000), universal image quality index (QAVE) (Zhou and Bovik 2002),
Spectral Angle Mapper (SAM) (Yuhas, Goetz, and Boardman 1992), and spectral infor-
mation divergence (SID) (Chang 2000). The spatial metric is called coherence (Wang,

Figure 5. Pansharpening results for a sample image from the Geoeye-1 data set. (a) Pan band. (b) Upscaled
MS image. (c) Reference image. (d) BDSD. (e) Brovey. (f) GIHS. (g) GS. (h) GSA. (i) PCA. (j) PRACS. (k) ATWT.
(l) ATWT-M2. (m) ATWT-M3. (n) AWLP. (o) HPF. (p) Indusion. (q) MTF-GLP. (r) SFIM. (s) Ours1. (t) Ours2.
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Shi, and Atkinson 2016), which is quantified by one minus the correlation
coefficient (r). Coherence is an index measuring the relation between the pansharpen-
ing results and the reference image. In addition, the root mean square error (RMSE)

Figure 6. Pansharpening results for a sample image from the Landsat 8 OLI data set. (a) Pan band. (b)
Upscaled MS image. (c) Reference image. (d) BDSD. (e) Brovey. (f) GIHS. (g) GS. (h) GSA. (i) PCA. (j) PRACS. (k)
ATWT. (l) ATWT-M2. (m) ATWT-M3. (n) AWLP. (o) HPF. (p) Indusion. (q)MTF-GLP. (r) SFIM. (s) Ours1. (t) Ours2.
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and the peak signal to noise ratio (PSNR) are also used to evaluate the overall
performance. The quantitative assessment results for the 17 methods on the six data
sets are reported in Tables 3–8.

Figure 7. Pansharpening results for a sample image from the SPOT-6 data set. (a) Pan band. (b) Upscaled
MS image. (c) Reference image. (d) BDSD. (e) Brovey. (f) GIHS. (g) GS. (h) GSA. (i) PCA. (j) PRACS. (k) ATWT.
(l) ATWT-M2. (m) ATWT-M3. (n) AWLP. (o) HPF. (p) Indusion. (q) MTF-GLP. (r) SFIM. (s) Ours1. (t) Ours2.
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The ideal reference value for each evaluation metric is also provided for convenience
of inter-comparison in the first row of each table. From these tables, the following
factors are observed. (1) CS methods generally suffer from severe spectral distortions,

Figure 8. Pansharpening results for a sample image from the QuickBird data set. (a) Pan band. (b) Upscaled
MS image. (c) Reference image. (d) BDSD. (e) Brovey. (f) GIHS. (g) GS. (h) GSA. (i) PCA. (j) PRACS. (k) ATWT.
(l) ATWT-M2. (m) ATWT-M3. (n) AWLP. (o) HPF. (p) Indusion. (q) MTF-GLP. (r) SFIM. (s) Ours1. (t) Ours2.
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while having good spatial coherence. PRACS performs the best in the CS family. It even
achieves the best results among all of the 17 methods on the SPOT-6 data set. (2) MRA
methods usually preserve good spectral properties and poor spatial coherence; the

Figure 9. Pansharpening results for a sample image from the Worldview-2 data set. (a) Pan band. (b)
Upscaled MS image. (c) Reference image. (d) BDSD. (e) Brovey. (f) GIHS. (g) GS. (h) GSA. (i) PCA. (j) PRACS. (k)
ATWT. (l) ATWT-M2. (m) ATWT-M3. (n) AWLP. (o) HPF. (p) Indusion. (q)MTF-GLP. (r) SFIM. (s) Ours1. (t) Ours2.
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overall performance of the MRA methods (except for ATWT-M2 and ATWT-M3) is usually
better than the CS methods (except for PRACS). Although ATWT-M2 and ATWT-M3
achieve good RMSEs on several data sets, their performance is poor due to the severe

Figure 10. Pansharpening results for a sample image from the Worldview-3 data set. (a) Pan band. (b)
Upscaled MS image. (c) Reference image. (d) BDSD. (e) Brovey. (f) GIHS. (g) GS. (h) GSA. (i) PCA. (j) PRACS. (k)
ATWT. (l) ATWT-M2. (m) ATWT-M3. (n) AWLP. (o) HPF. (p) Indusion. (q)MTF-GLP. (r) SFIM. (s) Ours1. (t) Ours2.

1032 J. LI ET AL.

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 2
3:

38
 0

9 
N

ov
em

be
r 

20
17

 



blurry effects. (3) The proposed two methods achieve impressive results due to the
consideration of the spatial distribution characteristic. Ours2 achieves the best overall
performance on five of the six data sets. Table 9 provides the average performance of

Figure 11. Error maps between the fusion results and the reference image in Figure 7. (a) Reference.
(b) BDSD. (c) Brovey. (d) GIHS. (e) GS. (f) GSA. (g) PCA. (h) PRACS. (i) ATWT. (j) ATWT-M2. (k) ATWT-
M3. (l) AWLP. (m) HPF. (n) Indusion. (o) MTF-GLP. (p) SFIM. (q) Ours1. (r) Ours2.

INTERNATIONAL JOURNAL OF REMOTE SENSING 1033

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 2
3:

38
 0

9 
N

ov
em

be
r 

20
17

 



each method on these six data sets. The methods in the table are ranked by the RMSE
index. Note that the ATWT-M2 and ATWT-M3 methods are not included due to their
severe blurry effects. As can be seen, PRACS is the best in the CS family, which ranks the
third of all of the 17 methods; ATWT, AWLP, and MTF-GLP perform better than the other
MRA methods; Ours2 and Ours1 outperform the other 15 widely used methods; Ours2 is
better than Ours1.

3.4. Running time comparison

We compare the running time of the proposed two methods with several widely used
approaches, including GIHS, PRACS, ATWT, AWLP, and MTF-GLP, on the SPOT-6 data set.

Table 3. Quantitative assessment of the fusion methods on the Geoeye-1 data set.
Method RMSE RASE PSNR ERGAS QAVE SAM (°) SID 1-r

Reference 0 0 +∞ 0 1 0 0 0
BDSD 25.88 23.48 19.97 5.84 0.503 4.08 0.088 0.017
Brovey 22.55 20.69 21.18 5.13 0.527 3.75 0.072 0.020
GIHS 22.25 20.34 21.30 5.14 0.536 3.92 0.082 0.013
GS 22.26 20.34 21.29 5.12 0.531 3.90 0.080 0.013
GSA 24.19 21.99 20.55 5.52 0.516 4.10 0.093 0.028
PCA 22.23 20.30 21.31 5.11 0.530 3.90 0.080 0.013
PRACS 21.78 19.58 21.48 4.88 0.518 3.65 0.060 0.019
ATWT 20.75 18.92 21.91 4.75 0.533 3.71 0.077 0.022
ATWT-M2 17.37 16.02 23.47 3.99 0.539 3.39 0.061 0.014
ATWT-M3 17.38 16.01 23.46 3.98 0.539 3.38 0.059 0.015
AWLP 20.99 19.27 21.80 4.75 0.520 4.08 0.095 0.016
HPF 20.89 19.05 21.85 4.78 0.534 3.66 0.074 0.021
Indusion 21.85 19.93 21.45 5.01 0.530 3.97 0.089 0.014
MTF-GLP 20.86 19.02 21.86 4.77 0.533 3.75 0.079 0.022
SFIM 20.96 19.16 21.82 4.82 0.529 3.54 0.068 0.018
Ours1 18.56 17.09 22.89 4.29 0.542 3.48 0.064 0.014
Ours2 16.06 14.64 24.15 3.66 0.545 3.37 0.058 0.014

The bold values indicate the most accurate result in each term.

Table 4. Quantitative assessment of the fusion methods on the Landsat 8 OLI data set.
Method RMSE RASE PSNR ERGAS QAVE SAM (°) SID 1-r

Reference 0 0 +∞ 0 1 0 0 0
BDSD 6.87 4.73 34.17 2.36 0.655 1.12 0.016 0.009
Brovey 8.37 5.65 31.43 2.83 0.654 1.08 0.014 0.008
GIHS 8.30 5.61 31.50 2.81 0.654 1.10 0.011 0.008
GS 8.32 5.62 31.48 2.80 0.651 1.12 0.011 0.009
GSA 10.30 7.04 30.08 3.50 0.643 1.67 0.021 0.013
PCA 8.31 5.62 31.49 2.80 0.651 1.12 0.012 0.009
PRACS 8.26 5.59 31.62 2.78 0.648 1.21 0.024 0.012
ATWT 7.23 4.83 32.31 2.41 0.653 1.14 0.015 0.012
ATWT-M2 5.82 3.99 35.28 1.99 0.650 1.10 0.013 0.011
ATWT-M3 5.91 4.04 35.02 2.02 0.649 1.11 0.014 0.012
AWLP 7.28 4.86 32.24 2.42 0.651 1.17 0.017 0.011
HPF 7.36 4.92 32.24 2.46 0.653 1.12 0.015 0.012
Indusion 9.01 6.10 30.94 3.04 0.645 1.17 0.014 0.009
MTF-GLP 7.14 4.78 32.44 2.38 0.653 1.12 0.015 0.012
SFIM 7.33 4.90 32.26 2.45 0.653 1.09 0.011 0.012
Ours1 6.01 4.05 34.73 2.03 0.655 1.09 0.014 0.009
Ours2 5.47 3.70 35.33 1.85 0.655 1.08 0.014 0.009

The bold values indicate the most accurate result in each term.
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The results are shown in Table 10. GIHS is the most efficient, which is an order of
magnitude faster than the others. Ours1 is faster than PRACS and the other compared
MRA methods. Ours2 is a global energy function minimization method, which achieves
the best accuracy performance at the cost of heavy running time. However, Ours2 is
much faster than the ATPRK method, whose reported running time is hundreds of
seconds for a 256 × 256 image on an Intel Core i7 Processor at 3.40 GHz. It mainly
profits from the fact that the global cost function minimization is a linear least squares
problem, which can avoid the iterative procedure and greatly reduce computational
complexity.

Table 5. Quantitative assessment of the fusion methods on the SPOT-6 data set.
Method RMSE RASE PSNR ERGAS QAVE SAM (°) SID 1-r

Reference 0 0 +∞ 0 1 0 0 0
BDSD 35.37 36.58 17.28 9.12 0.475 7.48 0.206 0.007
Brovey 32.23 33.40 18.01 8.38 0.483 4.92 0.094 0.015
GIHS 31.98 33.13 18.08 8.41 0.517 5.34 0.086 0.007
GS 32.00 33.15 18.07 8.42 0.516 5.43 0.088 0.008
GSA 31.47 32.46 18.29 8.27 0.462 11.35 0.255 0.026
PCA 31.99 33.14 18.07 8.42 0.515 5.43 0.088 0.008
PRACS 19.66 20.27 22.33 5.14 0.518 4.17 0.049 0.010
ATWT 21.39 22.05 21.58 5.62 0.523 5.90 0.136 0.020
ATWT-M2 22.65 23.39 21.12 5.93 0.529 4.23 0.047 0.015
ATWT-M3 22.29 23.02 21.27 5.84 0.530 4.22 0.046 0.016
AWLP 21.51 22.19 21.52 5.59 0.502 5.97 0.091 0.014
HPF 22.45 23.14 21.16 5.89 0.529 5.29 0.108 0.019
Indusion 26.34 27.14 19.79 6.89 0.516 6.05 0.145 0.010
MTF-GLP 21.31 21.97 21.60 5.59 0.521 6.15 0.147 0.021
SFIM 23.40 24.18 20.78 6.22 0.531 4.78 0.096 0.016
Ours1 22.17 22.72 21.33 5.86 0.549 4.23 0.047 0.013
Ours2 20.50 21.19 21.97 5.46 0.549 4.17 0.049 0.013

The bold values indicate the most accurate result in each term.

Table 6. Quantitative assessment of the fusion methods on the QuickBird data set.
Method RMSE RASE PSNR ERGAS QAVE SAM (°) SID 1-r

Reference 0 0 +∞ 0 1 0 0 0
BDSD 30.65 30.07 18.94 7.41 0.479 5.99 0.107 0.014
Brovey 36.53 36.70 17.87 9.13 0.449 5.68 0.076 0.017
GIHS 36.33 36.49 17.91 9.10 0.467 6.12 0.103 0.014
GS 36.37 36.53 17.90 9.09 0.449 6.09 0.103 0.016
GSA 35.49 34.64 17.54 8.62 0.445 9.38 0.122 0.020
PCA 36.40 36.56 17.89 9.10 0.448 6.10 0.103 0.016
PRACS 19.32 18.93 22.73 4.77 0.487 4.50 0.064 0.015
ATWT 22.54 22.40 21.73 5.58 0.479 6.67 0.102 0.020
ATWT-M2 17.61 17.58 23.73 4.40 0.486 4.68 0.077 0.017
ATWT-M3 17.49 17.49 23.84 4.38 0.489 4.76 0.077 0.017
AWLP 22.66 22.54 21.68 5.61 0.468 6.72 0.091 0.017
HPF 22.88 22.73 21.59 5.66 0.481 6.38 0.099 0.019
Indusion 26.59 26.39 20.25 6.58 0.475 6.38 0.101 0.016
MTF-GLP 22.71 22.59 21.69 5.62 0.478 6.77 0.103 0.020
SFIM 26.01 26.34 20.61 6.61 0.471 5.86 0.098 0.021
Ours1 18.58 18.74 23.42 4.76 0.501 4.41 0.077 0.015
Ours2 17.27 17.16 24.32 4.21 0.510 4.31 0.077 0.015

The bold values indicate the most accurate result in each term.
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4. Discussion

This article proposes a spatial distribution consistency assumption between the ideal
HRMS image and the Pan band, and develops their relationship model. However, the
spatial consistency and the spatial heterogeneity between the Pan band and the MS
image exist at the same time (Thomas et al. 2008). The proposed constraint requires only
the extreme positions and local change trend to be consistent. Actually, the magnitude
of the specific change is different, so a certain extent of ‘the Pan and MS images spatial
heterogeneity characteristics’ is taken into account. Balancing the consistency and
heterogeneity needs further study and research.

Table 7. Quantitative assessment of the fusion methods on the Worldview-2 data set.
Method RMSE RASE PSNR ERGAS QAVE SAM (°) SID 1-r

Reference 0 0 +∞ 0 1 0 0 0
BDSD 24.09 35.89 20.58 8.78 0.340 8.92 0.165 0.010
Brovey 25.79 39.38 20.04 9.86 0.332 6.91 0.068 0.011
GIHS 25.70 39.29 20.08 9.83 0.347 7.54 0.094 0.015
GS 25.71 39.29 20.08 9.83 0.344 7.60 0.094 0.014
GSA 21.32 32.45 21.67 8.10 0.313 14.67 0.312 0.025
PCA 25.69 39.27 20.09 9.83 0.344 7.61 0.094 0.014
PRACS 18.70 28.63 22.96 7.23 0.367 6.57 0.067 0.017
ATWT 17.72 27.12 23.46 6.79 0.360 8.44 0.143 0.021
ATWT-M2 23.10 35.16 21.06 8.80 0.351 6.67 0.069 0.018
ATWT-M3 22.16 33.72 21.42 8.44 0.357 6.66 0.070 0.019
AWLP 17.65 27.00 23.47 6.77 0.356 7.83 0.082 0.018
HPF 17.56 26.90 23.56 6.74 0.366 7.55 0.115 0.019
Indusion 19.53 29.56 22.42 7.38 0.351 8.95 0.142 0.016
MTF-GLP 17.62 26.95 23.47 6.74 0.359 8.78 0.148 0.022
SFIM 16.83 25.73 23.82 6.48 0.355 7.01 0.100 0.019
Ours1 18.05 27.57 23.26 6.92 0.369 6.67 0.072 0.015
Ours2 15.84 24.23 24.40 6.08 0.370 6.63 0.074 0.015

The bold values indicate the most accurate result in each term.

Table 8. Quantitative assessment of the fusion methods on the Worldview-3 data set.
Method RMSE RASE PSNR ERGAS QAVE SAM (°) SID 1-r

Reference 0 0 +∞ 0 1 0 0 0
BDSD 12.02 27.74 27.27 6.76 0.429 5.92 0.081 0.007
Brovey 12.83 30.08 26.32 7.49 0.381 7.18 0.040 0.009
GIHS 12.83 30.05 26.33 7.48 0.391 7.68 0.084 0.008
GS 12.81 30.02 26.33 7.47 0.380 7.65 0.086 0.009
GSA 10.59 24.68 28.17 6.14 0.395 9.72 0.146 0.015
PCA 12.79 29.96 26.35 7.45 0.380 7.65 0.086 0.009
PRACS 8.69 19.96 30.08 5.03 0.440 4.12 0.020 0.012
ATWT 8.84 20.54 29.83 5.14 0.432 6.06 0.074 0.013
ATWT-M2 12.59 29.16 27.53 7.29 0.422 4.18 0.017 0.011
ATWT-M3 11.65 26.96 28.14 6.73 0.421 4.25 0.020 0.012
AWLP 8.81 20.48 29.86 5.13 0.430 5.73 0.038 0.011
HPF 8.97 20.92 29.81 5.23 0.438 5.54 0.061 0.014
Indusion 10.05 23.39 28.71 5.83 0.420 6.46 0.078 0.010
MTF-GLP 8.97 20.62 29.45 5.15 0.431 6.34 0.078 0.014
SFIM 10.39 24.62 28.05 6.13 0.425 5.52 0.074 0.020
Ours1 8.35 19.15 30.46 4.85 0.433 4.26 0.018 0.010
Ours2 8.05 17.91 30.37 4.54 0.430 4.28 0.020 0.011

The bold values indicate the most accurate result in each term.
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Another important issue is the universality of the spatial consistency. Different objects
have different reflectances and absorptions, so the intensity values of different bands are
quite different. For example, vegetation is absorbed in the R band and reflected in the G
band, making the intensity values of the G band greater than the ones of the R band.
However, the intensity value differences between the R and G bands do not contradict
with the assumption of spatial consistency. The intensity value differences at the same
position do not affect the consistency of the spatial characteristics. The same object at
different image bands has a consistent change trend, i.e. local trends and extreme
positions are the same. Figure 12 provides an example to show the intensity of the
statistical characteristics of vegetation in the R and G bands.

In the figure, the first row displays four remote-sensing images of different vegetation
regions, and the red line in each image indicates the selected pixels. The green lines in
the last row of Figure 12 are the curves of the pixel values in the G band, and the red
lines are the pixel curves in the R band. As can be seen, the intensity values of the G
band are generally larger than the values of the R band. This heterogeneity agrees with
the fact that ‘vegetation is absorbed in the R band and reflected in the G band’.
However, it can also be found that the local extreme positions in the R and G bands
are almost at the same locations, and the local monotonicity of the two curves is also
consistent. Obviously, spatial heterogeneity and spatial consistency exist simultaneously
in remote-sensing images. Spatial heterogeneity reflects the reflection and absorption
characteristic differences of the same object in different bands. The incident angles
caused by the different spatial positions and terrains are not the same, resulting in
‘synonyms spectrum’ phenomenon. In different spatial positions, the change trends of
the same object in different bands are the same and consistent with the relevant spatial
terrain, which is the spatial consistency proposed in this article. The utility of spatial

Table 9. Average quantitative assessment of the fusion methods on the six data sets.
Method RMSE RASE PSNR ERGAS QAVE SAM (°) SID 1-r

Reference 0 0 +∞ 0 1 0 0 0
Ours2 13.87 16.47 26.76 4.30 0.510 3.97 0.052 0.013
Ours1 15.29 18.22 26.02 4.79 0.508 4.02 0.051 0.013
PRACS 16.07 18.81 25.20 4.97 0.496 4.04 0.047 0.014
ATWT 16.41 19.31 25.14 5.05 0.497 5.32 0.091 0.018
MTF-GLP 16.44 19.32 25.09 5.04 0.496 5.49 0.095 0.019
AWLP 16.48 19.39 25.10 5.05 0.488 5.25 0.069 0.015
HPF 16.69 19.61 25.04 5.13 0.500 4.92 0.079 0.017
SFIM 17.49 20.82 24.56 5.45 0.494 4.63 0.076 0.018
Indusion 18.90 22.09 23.93 5.79 0.490 5.50 0.095 0.013
GSA 22.21 25.54 22.72 6.69 0.462 8.48 0.158 0.021
BDSD 22.48 26.42 23.04 6.71 0.480 5.59 0.111 0.011
GIHS 22.90 27.49 22.53 7.19 0.485 5.28 0.077 0.011
PCA 22.90 27.48 22.53 7.12 0.478 5.30 0.077 0.012
GS 22.91 27.49 22.53 7.12 0.479 5.30 0.077 0.012
Brovey 23.05 27.65 22.48 7.14 0.471 4.92 0.061 0.013

The bold values indicate the most accurate result in each term.

Table 10. Running time comparisons.
Method GIHS PRACS ATWT AWLP MTF-GLP Ours1 Ours2

Time (s) 0.02 0.41 0.55 0.47 0.44 0.21 31.26
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consistency characteristics may reduce the fragmentation problem of image classifica-
tion caused by the synonyms spectrum. The same object in different locations can be
classified through its intensity features and texture features; meanwhile, the fragmented
things can be merged by introducing an intensity-scale consistency between different
bands.

5. Conclusions

In this article, we propose a spatial distribution consistency prior for remote-sensing
image pansharpening. This prior assumes that the spatial distributions of the ideal HRMS
image pixel values and the Pan image pixel values are consistent. According to the
physical and algebraic meaning of the spatial consistency assumption, two modelling
methods, namely local linear transformation and global cost function, are presented to
express the relationship between the Pan and the MS images. The local linear method
makes a trade-off between accuracy and efficiency, which is less accurate than the
global cost method but faster than it. Both methods are validated on six real satellite
image data sets, which are composed of 300 images, and are compared with 15 other
widely used approaches. The experimental results show that the proposed two methods
achieve very impressive performance.

Notes

1. https://www.digitalglobe.com/product-samples.
2. http://www.openremotesensing.net./index.php/codes/11-pansharpening/2-pansharpening.
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Figure 12. Spatial consistency in different vegetation regions.
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